SEMIALGEBRAIC SARD THEOREM FOR GENERALIZED CRITICAL VALUES

We prove that a semialgebraic differentiable mapping has a generalized critical values set of measure zero. Moreover, if the mapping is C 2 we obtain, bya generalisation of Ehresmann’s fibration theorem due to P. J. Rabier [20], a locallytrivial fibration over the complement of this set. In the complex case, we prove that the set of generalized critical values of a polynomial mapping is a proper algebraic set.

[1]  R. Palais Lusternik-Schnirelman theory on Banach manifolds , 1966 .

[2]  T. Kuo Characterizations of υ-sufficiency of jets , 1972 .

[3]  Yosef Yomdin,et al.  The geometry of critical and near-critical values of differentiable mappings , 1983 .

[4]  François Treves,et al.  On the local solvability and the local integrability of systems of vector fields , 1983 .

[5]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[6]  Krzysztof Kurdyka,et al.  On a subanalytic stratification satisfying a Whitney property with exponent 1 , 1992 .

[7]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[8]  Adam Parusinski,et al.  On the bifurcation set of complex polynomial with isolated singularities at infinity , 1995 .

[9]  S. Donaldson Symplectic submanifolds and almost-complex geometry , 1996 .

[10]  Distance géodésique sur un sous-analytique , 1997 .

[11]  Patrick J. Rabier,et al.  Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds , 1997 .

[12]  K. Kurdyka,et al.  Proof of the gradient conjecture of R. Thom , 1999, math/9906212.

[13]  Fibers of Polynomial Mappings at Infinity and a Generalized Malgrange Condition , 1999, Compositio Mathematica.

[14]  Zbigniew Jelonek,et al.  Testing sets for properness of polynomial mappings , 1999 .

[15]  A. Zaharia,et al.  Asymptotic behaviour of families of real curves , 1999 .

[16]  A. Zaharia,et al.  Remarks on the Milnor fibration at infinity , 2000 .