Key nodes identification in complex networks based on subnetwork feature extraction

[1]  G. Fiumara,et al.  Influential Spreaders Identification in Complex Networks With TOPSIS and K-Shell Decomposition , 2023, IEEE Transactions on Computational Social Systems.

[2]  Wei Wang,et al.  Traffic Node Importance Evaluation Based on Clustering in Represented Transportation Networks , 2022, IEEE Transactions on Intelligent Transportation Systems.

[3]  Guohui Li,et al.  Compatible Influence Maximization in Online Social Networks , 2022, IEEE Transactions on Computational Social Systems.

[4]  Yong Deng,et al.  Identification of influential nodes in complex networks: A local degree dimension approach , 2022, Inf. Sci..

[5]  Alejandro F Frangi,et al.  Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces and Joint Kinematics From Surface EMG , 2022, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  Nur Ezlin Zamri,et al.  Weighted Random k Satisfiability for k=1,2, 2022, Applied Soft Computing.

[7]  K. H. Cheong,et al.  The random walk-based gravity model to identify influential nodes in complex networks , 2022, Inf. Sci..

[8]  Lei Jin,et al.  A new approach for evaluating node importance in complex networks via deep learning methods , 2022, Neurocomputing.

[9]  Jianguo Liu,et al.  Identification of spreading influence nodes via multi-level structural attributes based on the graph convolutional network , 2022, Expert Syst. Appl..

[10]  Siti Zulaikha Mohd Jamaludin,et al.  Supervised Learning Perspective in Logic Mining , 2022, Mathematics.

[11]  Bryan Perozzi,et al.  GraphWorld: Fake Graphs Bring Real Insights for GNNs , 2022, Knowledge Discovery and Data Mining.

[12]  Jinfang Sheng,et al.  Identifying vital nodes from local and global perspectives in complex networks , 2021, Expert Syst. Appl..

[13]  Bowen Du,et al.  Representation Learning on Knowledge Graphs for Node Importance Estimation , 2021, KDD.

[14]  Qun Jin,et al.  Academic Influence Aware and Multidimensional Network Analysis for Research Collaboration Navigation Based on Scholarly Big Data , 2021, IEEE Transactions on Emerging Topics in Computing.

[15]  Maoguo Gong,et al.  Exploring Temporal Information for Dynamic Network Embedding , 2020, IEEE Transactions on Knowledge and Data Engineering.

[16]  Anmin Zhou,et al.  InfGCN: Identifying influential nodes in complex networks with graph convolutional networks , 2020, Neurocomputing.

[17]  Wendong Xiao,et al.  Non-iterative and Fast Deep Learning: Multilayer Extreme Learning Machines , 2020, J. Frankl. Inst..

[18]  Mei Xie,et al.  Identifying critical nodes in complex networks via graph convolutional networks , 2020, Knowl. Based Syst..

[19]  Yizhou Sun,et al.  Finding key players in complex networks through deep reinforcement learning , 2020, Nature Machine Intelligence.

[20]  Jiayu Zhou,et al.  Graph convolutional networks for computational drug development and discovery , 2019, Briefings Bioinform..

[21]  Christos Faloutsos,et al.  Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks , 2019, KDD.

[22]  Mei Xie,et al.  Identifying influential spreaders in complex networks by propagation probability dynamics. , 2019, Chaos.

[23]  Bin Liu,et al.  HITS-PR-HHblits: protein remote homology detection by combining PageRank and Hyperlink-Induced Topic Search , 2018, Briefings Bioinform..

[24]  Lisandro Zambenedetti Granville,et al.  Machine Learning in Network Centrality Measures , 2018, ACM Comput. Surv..

[25]  Congliang Tu,et al.  Fast ranking nodes importance in complex networks based on LS-SVM method , 2018, Physica A: Statistical Mechanics and its Applications.

[26]  Minxia Luo,et al.  Ensemble extreme learning machine and sparse representation classification , 2016, J. Frankl. Inst..

[27]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[28]  Glenn Lawyer,et al.  Understanding the influence of all nodes in a network , 2015, Scientific Reports.

[29]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[30]  Edith Cohen,et al.  Computing classic closeness centrality, at scale , 2014, COSN '14.

[31]  David F. Gleich,et al.  PageRank beyond the Web , 2014, SIAM Rev..

[32]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[33]  Sangwook Kim,et al.  Identifying and ranking influential spreaders in complex networks by neighborhood coreness , 2014 .

[34]  Ümit V. Çatalyürek,et al.  Incremental algorithms for closeness centrality , 2013, 2013 IEEE International Conference on Big Data.

[35]  Duanbing Chen,et al.  Identifying Influential Spreaders by Weighted LeaderRank , 2013, ArXiv.

[36]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[37]  Loet Leydesdorff,et al.  Betweenness centrality as an indicator of the interdisciplinarity of scientific journals , 2007, J. Assoc. Inf. Sci. Technol..

[38]  Ulrik Brandes,et al.  Centrality Estimation in Large Networks , 2007, Int. J. Bifurc. Chaos.

[39]  M. Moran,et al.  Large-scale mapping of human protein–protein interactions by mass spectrometry , 2007, Molecular systems biology.

[40]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[42]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[43]  A. Arenas,et al.  Community detection in complex networks using extremal optimization. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Pablo M. Gleiser,et al.  Community Structure in Jazz , 2003, Adv. Complex Syst..

[45]  A. Arenas,et al.  Self-similar community structure in a network of human interactions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Lada A. Adamic,et al.  Search in Power-Law Networks , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[48]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[49]  Tingting Cao,et al.  Learning to rank complex network node based on the self-supervised graph convolution model , 2022, Knowl. Based Syst..

[50]  Ratul Mahajan,et al.  Measuring ISP topologies with Rocketfuel , 2004, IEEE/ACM Transactions on Networking.

[51]  Y. J. Lee,et al.  Equilibrium Traffic Assignment on an Aggregated Highway Network for Sketch Planning , 2022 .