Models, numerical methods, and uncertainty quantification for radiation therapy

The evolution of particles traveling through a background medium can be described by the linear Boltzmann transport equation. For this equation, we study several numerical methods with the focus on radiation therapy. The main challenges to solve the linear transport equation numerically are the large dimensionality of the problem, the integro-differential form of the equation, and the highly varying material parameters in the scattering operator. In this work, we consider four main topics. First, we introduce a numerical method for electron transport based on the continuous slowing down approximation. We adapt a second order staggered grid method for spherical harmonic moment equations of radiative transfer to our application. Secondly, we investigate the filtered spherical harmonic (FPN ) equations, which have the potential to reduce the Gibbs phenomena around discontinuities. In particular, we prove global L2 convergence properties of the FPN equations and show how the convergence rates depend on the smoothness of the solution and the order of the filter. Thirdly, we extend a one-dimensional staggered grid method to two spatial dimensions. Due to the staggering, the method requires less unknowns than one might have expected and leads to a compact stencil in the discrete diffusion limit. In addition, we rigorously analyze the underlying one-dimensional scheme and show that the scheme is asymptotic preserving. Lastly, we derive a twolevel sampling strategy based on a model hierarchy to improve a stochastic collocation sparse grid method for uncertainty quantification. The method combines a reduced model for the hyperbolic relaxation system with a correction in a two-level framework to balance the different error terms and to minimize the computational cost. For all major topics, we present several numerical experiments to confirm the theoretical predictions.

[1]  Lorenzo Pareschi,et al.  Discretization of the Multiscale Semiconductor Boltzmann Equation by Diffusive Relaxation Schemes , 2000 .

[2]  W. H. Reed,et al.  Ray-Effect Mitigation Methods for Two-Dimensional Neutron Transport Theory , 1977 .

[3]  B G Fallone,et al.  A deterministic solution of the first order linear Boltzmann transport equation in the presence of external magnetic fields. , 2015, Medical physics.

[4]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[5]  D A Low,et al.  A software tool for the quantitative evaluation of 3D dose calculation algorithms. , 1998, Medical physics.

[6]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[7]  Giacomo Dimarco,et al.  Exponential Runge-Kutta Methods for Stiff Kinetic Equations , 2010, SIAM J. Numer. Anal..

[8]  Kun Xu,et al.  A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations , 2011, J. Comput. Phys..

[9]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..

[10]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[11]  G. N. Minerbo,et al.  Maximum entropy Eddington factors , 1978 .

[12]  F. Golse,et al.  A numerical method for computing asymptotic states and outgoing distributions for kinetic linear half-space problems , 1995 .

[13]  C. D. Levermore,et al.  Fully-discrete numerical transfer in diffusive regimes , 1993 .

[14]  Cory D. Hauck,et al.  Radiation transport modeling using extended quadrature method of moments , 2013, J. Comput. Phys..

[15]  Kerstin Küpper,et al.  Convergence of filtered spherical harmonic equations for radiation transport , 2016 .

[16]  José M. Fernández-Varea,et al.  Overview of physical interaction models for photon and electron transport used in Monte Carlo codes , 2009 .

[17]  K. Atkinson,et al.  Spherical Harmonics and Approximations on the Unit Sphere: An Introduction , 2012 .

[18]  Daniele Marchisio,et al.  Computational Models for Polydisperse Particulate and Multiphase Systems , 2013 .

[19]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[20]  Ryan G. McClarren,et al.  Robust and accurate filtered spherical harmonics expansions for radiative transfer , 2010, J. Comput. Phys..

[21]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[22]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[23]  E. Tadmor Spectral methods for time dependent problems , 1990 .

[24]  Luc Mieussens,et al.  On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models , 2013, J. Comput. Phys..

[25]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .

[26]  J. Sempau,et al.  A PENELOPE-based system for the automated Monte Carlo simulation of clinacs and voxelized geometries-application to far-from-axis fields. , 2011, Medical physics.

[27]  Fabio Nobile,et al.  Analysis and computation of the elastic wave equation with random coefficients , 2015, Comput. Math. Appl..

[28]  Christophe Berthon,et al.  Numerical Methods for Balance Laws with Space Dependent Flux: Application to Radiotherapy Dose Calculation , 2011 .

[29]  Luciano Rezzolla,et al.  A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations , 2012, J. Comput. Phys..

[30]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[31]  Edward W. Larsen,et al.  General Principles of Neutron Transport , 2010 .

[32]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[33]  B A Fraass,et al.  Electron dose calculations using the Method of Moments. , 1997, Medical physics.

[34]  Fabio Nobile,et al.  Computers and Mathematics with Applications Convergence of Quasi-optimal Stochastic Galerkin Methods for a Class of Pdes with Random Coefficients , 2022 .

[35]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[36]  K. D. Lathrop RAY EFFECTS IN DISCRETE ORDINATES EQUATIONS. , 1968 .

[37]  Sabine Fenstermacher,et al.  Equations Of Radiation Hydrodynamics , 2016 .

[38]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[39]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[40]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[41]  B. G. Pachpatte,et al.  Inequalities for differential and integral equations , 1998 .

[42]  P. Huynh,et al.  HERACLES: a three-dimensional radiation hydrodynamics code , 2007 .

[43]  Axel Klar,et al.  Asymptotic-Induced Domain Decomposition Methods for Kinetic and Drift Diffusion Semiconductor Equations , 1998, SIAM J. Sci. Comput..

[44]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[45]  Edward W. Larsen,et al.  Advances in Discrete-Ordinates Methodology , 2010 .

[46]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[47]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[48]  M. Herty,et al.  On Existence of $L^2$-solutions of Coupled Boltzmann Continuous Slowing Down Transport Equation System , 2016, 1603.05534.

[49]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[50]  Cory D. Hauck,et al.  A Comparison of Moment Closures for Linear Kinetic Transport Equations: The Line Source Benchmark , 2013 .

[51]  Markus Holtz,et al.  Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance , 2010, Lecture Notes in Computational Science and Engineering.

[52]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[53]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[54]  Benjamin Seibold,et al.  StaRMAP---A Second Order Staggered Grid Method for Spherical Harmonics Moment Equations of Radiative Transfer , 2012, ACM Trans. Math. Softw..

[55]  Edgar Olbrant,et al.  Generalized Fokker-Planck Theory for Electron and Photon Transport in Biological Tissues: Application to Radiotherapy , 2010, Comput. Math. Methods Medicine.

[56]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[57]  Jia Deng,et al.  IMPLICIT ASYMPTOTIC PRESERVING SCHEMES FOR SEMICONDUCTOR BOLTZMANN EQUATION IN THE DIFFUSIVE REGIME , 2013 .

[58]  Shi Jin,et al.  The discrete-ordinate method in diffusive regimes , 1991 .

[59]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[60]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[61]  B. Dubroca,et al.  Etude théorique et numérique d'une hiérarchie de modèles aux moments pour le transfert radiatif , 1999 .

[62]  Ryan G. McClarren,et al.  Simulating Radiative Transfer with Filtered Spherical Harmonics , 2010 .

[63]  Christian Schmeiser,et al.  Convergence of Moment Methods for Linear Kinetic Equations , 1998 .

[64]  Fabio Nobile,et al.  A stochastic collocation method for the second order wave equation with a discontinuous random speed , 2013, Numerische Mathematik.

[65]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[66]  Ryan G. McClarren,et al.  Positive PN Closures , 2010, SIAM J. Sci. Comput..

[67]  Hervé Vandeven,et al.  Family of spectral filters for discontinuous problems , 1991 .

[68]  Guannan Zhang,et al.  Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients , 2015, Numerische Mathematik.

[69]  Edward W. Larsen,et al.  Automated Weight Windows for Global Monte Carlo Particle Transport Calculations , 2001 .

[70]  Edgar Olbrant,et al.  Models and numerical methods for time- and energy-dependent particle transport , 2012 .

[71]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[72]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[73]  Giovanni Russo,et al.  On a Class of Uniformly Accurate IMEX Runge--Kutta Schemes and Applications to Hyperbolic Systems with Relaxation , 2009, SIAM J. Sci. Comput..

[74]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[75]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[76]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[77]  Dianne P. O'Leary,et al.  Adaptive change of basis in entropy-based moment closures for linear kinetic equations , 2013, J. Comput. Phys..

[78]  C Regan,et al.  Effect of the plasma-generated magnetic field on relativistic electron transport. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[80]  Shi Jin,et al.  An Asymptotic Preserving Two-dimensional Staggered Grid Method for Multiscale Transport Equations , 2016, SIAM J. Numer. Anal..

[81]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometry II: A Computational Study of the Optimization Problem , 2012, SIAM J. Sci. Comput..

[82]  L. Einkemmer Quasi-Monte Carlo methods , 2010 .

[83]  T. Patterson,et al.  The optimum addition of points to quadrature formulae. , 1968 .

[84]  D. Low,et al.  A technique for the quantitative evaluation of dose distributions. , 1998, Medical physics.

[85]  John Allison,et al.  Facilities and Methods: Geant4 – A Simulation Toolkit , 2007 .

[86]  Axel Klar,et al.  A Fast and Accurate Moment Method for the Fokker-Planck Equation and Applications to Electron Radiotherapy , 2007, SIAM J. Appl. Math..

[87]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[88]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[89]  G. C. Pomraning THE FOKKER-PLANCK OPERATOR AS AN ASYMPTOTIC LIMIT , 1992 .

[90]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[91]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[92]  T. J. Bridges Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves. By D. SERRE (translated by I. N. Sneddon). Cambridge University Press, 1999. 263 pp. ISBN 0 521 58233 4. £40. , 1999 .

[93]  J. C. Garth,et al.  ELECTRON/PHOTON TRANSPORT AND ITS APPLICATIONS , 2005 .

[94]  M. Frank,et al.  A deterministic partial differential equation model for dose calculation in electron radiotherapy , 2009, Physics in medicine and biology.

[95]  Taewan Noh,et al.  Spatial discretizations for self-adjoint forms of the radiative transfer equations , 2006, J. Comput. Phys..

[96]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[97]  C. Groth,et al.  Towards physically realizable and hyperbolic moment closures for kinetic theory , 2009 .

[98]  E. Aydin,et al.  A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method. , 2002, Medical physics.

[99]  François Golse,et al.  The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .

[100]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[101]  Xin Wen,et al.  Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients I : L 1-error estimates , 2007 .

[102]  François Golse,et al.  Diffusion approximation and entropy-based moment closure for kinetic equations , 2005 .

[103]  J. Sempau,et al.  PENELOPE-2006: A Code System for Monte Carlo Simulation of Electron and Photon Transport , 2009 .

[104]  P. Degond Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.

[105]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..