On perturbations of matrix pencils with real spectra

Perturbation bounds for the generalized eigenvalue problem of a diagonalizable matrix pencil A -AB with real spectrum are developed. It is shown how the chordal distances between the generalized eigenvalues and the angular distances between the generalized eigenspaces can be bounded in terms of the angular distances between the matrices. The applications of these bounds to the spectral variations of definite pencils are conducted in such a way that extra attention is paid to their peculiarities so as to derive more sophisticated perturbation bounds. Our results for generalized eigenvalues are counterparts of some celebrated theorems for the spectral variations of Hermitian matrices such as the Weyl-Lidskii theorem and the Hoffman-Wielandt theorem; and those for generalized eigenspaces are counterparts of the celebrated Davis-Kahan sin 0, sin 20 theorems for the eigenspace variations of Hermitian matrices. The paper consists of two parts. Part I is for generalized eigenvalue perturbations, while Part II deals with generalized eigenspace perturbations.

[1]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[2]  A. Hoffman,et al.  The variation of the spectrum of a normal matrix , 1953 .

[3]  G. Forsythe,et al.  The proper values of the sum and product of symmetric matrices , 1953 .

[4]  H. Wielandt An extremum property of sums of eigenvalues , 1955 .

[5]  L. Mirsky SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .

[6]  Tosio Kato Perturbation theory for linear operators , 1966 .

[7]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[8]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[9]  G. Stewart On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .

[10]  G. Stewart Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .

[11]  William Kahan,et al.  Spectra of nearly Hermitian matrices , 1975 .

[12]  C. R. Crawford A Stable Generalized Eigenvalue Problem , 1976 .

[13]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .

[14]  F. Uhlig A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .

[15]  G. Stewart Pertubation bounds for the definite generalized eigenvalue problem , 1979 .

[16]  Ludwig Elsner,et al.  Perturbation thèorems for the generalized eigenvalue problem , 1982 .

[17]  Ji-guang Sun,et al.  A note on Stewart's theorem for definite matrix pairs☆ , 1982 .

[18]  Chandler Davis,et al.  Perturbation of spectral subspaces and solution of linear operator equations , 1983 .

[19]  Ji-guang Sun The perturbation bounds for eigenspaces of a definite matrix-pair , 1983 .

[20]  Ji-guang Sun,et al.  Perturbation analysis for the generalized eigenvalue and the generalized singular value problem , 1983 .

[21]  Chandler Davis,et al.  A bound for the spectral variation of a unitary operator , 1984 .

[22]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[23]  Ren-Cang Li A converse to the Bauer-Fike type theorem , 1988 .

[24]  PERTURBATION BOUNDS FOR GENERALIZED EIGENVALUES. I , 1989 .

[25]  Chandler Davis,et al.  Some inequalities for communtators and an application to spectral variation , 1990 .

[26]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[27]  Ren-Cang Li On the variation of the spectra of matrix pencils , 1990 .

[28]  Ren-Cang Li,et al.  A Perturbation Bound for Definite Pencils , 1993 .

[29]  Ren-Cang Li Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils , 1993 .

[30]  Ren-Cang Li,et al.  Bounds on perturbations of generalized singular values and of associated subspaces , 1993 .