Multilinear PageRank

In this paper, we first extend the celebrated PageRank modification to a higher-order Markov chain. Although this system has attractive theoretical properties, it is computationally intractable for many interesting problems. We next study a computationally tractable approximation to the higher-order PageRank vector that involves a system of polynomial equations called multilinear PageRank. This is motivated by a novel “spacey random surfer” model, where the surfer remembers bits and pieces of history and is influenced by this information. The underlying stochastic process is an instance of a vertex-reinforced random walk. We develop convergence theory for a simple fixed-point method, a shifted fixed-point method, and a Newton iteration in a particular parameter regime. In marked contrast to the case of the PageRank vector of a Markov chain where the solution is always unique and easy to compute, there are parameter regimes of multilinear PageRank where solutions are not unique and simple algorithms do not converge. We provide a repository of these non-convergent cases that we encountered through exhaustive enumeration and randomly sampling that we believe is useful for future study of the problem.

[1]  Yunming Ye,et al.  HAR: Hub, Authority and Relevance Scores in Multi-Relational Data for Query Search , 2012, SDM.

[2]  Jan Draisma,et al.  Bounded-rank tensors are defined in bounded degree , 2011, 1103.5336.

[3]  M. Benaim,et al.  VERTEX-REINFORCED RANDOM WALKS AND A CONJECTURE OF PEMANTLE , 2002 .

[4]  Avi Wigderson,et al.  Quadratic dynamical systems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[5]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[6]  Philip S. Yu,et al.  Finding Stationary Probability Vector of a Transition Probability Tensor Arising from a Higher-order Markov Chain , 2011 .

[7]  R. Pemantle Vertex-reinforced random walk , 1992, math/0404041.

[8]  Tamara G. Kolda,et al.  Using Triangles to Improve Community Detection in Directed Networks , 2014, ArXiv.

[9]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[10]  M. Benaïm Vertex-reinforced random walks and a conjecture of Pemantle , 1997 .

[11]  O. Perron Zur Theorie der Matrices , 1907 .

[12]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[13]  Yunming Ye,et al.  MultiRank: co-ranking for objects and relations in multi-relational data , 2011, KDD.

[14]  Liyi Wen,et al.  ON THE LIMITING PROBABILITY DISTRIBUTION OF A TRANSITION PROBABILITY TENSOR , 2011 .

[15]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[16]  Anima Anandkumar,et al.  When are overcomplete topic models identifiable? uniqueness of tensor tucker decompositions with structured sparsity , 2013, J. Mach. Learn. Res..

[17]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[18]  David F. Gleich,et al.  PageRank beyond the Web , 2014, SIAM Rev..

[19]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[20]  Valerio Freschi,et al.  Protein function prediction from interaction networks using a random walk ranking algorithm , 2007, 2007 IEEE 7th International Symposium on BioInformatics and BioEngineering.

[21]  Jure Leskovec,et al.  Tensor Spectral Clustering for Partitioning Higher-order Network Structures , 2015, SDM.

[22]  M. Ng,et al.  Solving sparse non-negative tensor equations: algorithms and applications , 2015 .

[23]  Michael Schroeder,et al.  Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes , 2012, PLoS Comput. Biol..

[24]  Jure Leskovec,et al.  Governance in Social Media: A Case Study of the Wikipedia Promotion Process , 2010, ICWSM.

[25]  Sebastiano Vigna,et al.  Traps and Pitfalls of Topic-Biased PageRank , 2007, WAW.

[26]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[27]  Yunming Ye,et al.  MultiComm: Finding Community Structure in Multi-Dimensional Networks , 2014, IEEE Transactions on Knowledge and Data Engineering.

[28]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[29]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[30]  David F. Gleich,et al.  The Spacey Random Walk: A Stochastic Process for Higher-Order Data , 2016, SIAM Rev..

[31]  Andrei Z. Broder,et al.  Workshop on Algorithms and Models for the Web Graph , 2007, WAW.

[32]  Li Wang,et al.  Semidefinite Relaxations for Best Rank-1 Tensor Approximations , 2013, SIAM J. Matrix Anal. Appl..

[33]  Desmond J. Higham,et al.  GeneRank: Using search engine technology for the analysis of microarray experiments , 2005, BMC Bioinformatics.