Glioblastoma: Defining Tumor Niches.

[1]  M. Prados,et al.  Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. , 2016, Neuro-oncology.

[2]  G. Semenza,et al.  The hypoxic tumor microenvironment: A driving force for breast cancer progression. , 2016, Biochimica et biophysica acta.

[3]  G. Bergers,et al.  Tumor angiogenesis, from foe to friend , 2015, Science.

[4]  P. Vajkoczy,et al.  Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells , 2015, International Journal of Cancer.

[5]  R. Bourgon,et al.  Patients With Proneural Glioblastoma May Derive Overall Survival Benefit From the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  K. Aldape,et al.  Macitentan, a Dual Endothelin Receptor Antagonist, in Combination with Temozolomide Leads to Glioblastoma Regression and Long-term Survival in Mice , 2015, Clinical Cancer Research.

[7]  J. Rich,et al.  Cancer stem cells in glioblastoma , 2015, Genes & development.

[8]  Parag Mallick,et al.  Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion , 2015, Cell.

[9]  Gabriele Bergers,et al.  Intratumoral myeloid cells regulate responsiveness and resistance to antiangiogenic therapy. , 2015, Cell reports.

[10]  Brian Ruffell,et al.  Macrophages and therapeutic resistance in cancer. , 2015, Cancer cell.

[11]  Jennie W. Taylor,et al.  Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  G. Bergers,et al.  Intertwined regulation of angiogenesis and immunity by myeloid cells. , 2015, Trends in immunology.

[13]  Zhihong Chen,et al.  Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis , 2015, Oncotarget.

[14]  D. Born,et al.  Periostin is a novel therapeutic target that predicts and regulates glioma malignancy. , 2015, Neuro-oncology.

[15]  Michael D. Brooks,et al.  Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. , 2015, Current pharmaceutical design.

[16]  T. Langmann,et al.  Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1 , 2015, PloS one.

[17]  H. Dvorak Tumors: Wounds That Do Not Heal—Redux , 2015, Cancer Immunology Research.

[18]  William A. Flavahan,et al.  Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumor-associated Macrophages and Promotes Malignant Growth , 2014, Nature Cell Biology.

[19]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[20]  H. Kettenmann,et al.  Glioma‐associated microglial MMP9 expression is upregulated by TLR2 signaling and sensitive to minocycline , 2014, International journal of cancer.

[21]  H. Weiner,et al.  Differential roles of microglia and monocytes in the inflamed central nervous system , 2014, The Journal of experimental medicine.

[22]  Harald Sontheimer,et al.  A neurocentric perspective on glioma invasion , 2014, Nature Reviews Neuroscience.

[23]  Harald Sontheimer,et al.  Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells , 2014, Nature Communications.

[24]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[25]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[26]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[27]  S. Weiss,et al.  Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells , 2013, Nature Neuroscience.

[28]  M. Mazzone,et al.  Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. , 2013, Cancer cell.

[29]  G. Fuller,et al.  Neutrophils Promote the Malignant Glioma Phenotype through S100A4 , 2013, Clinical Cancer Research.

[30]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[31]  Christina S. Leslie,et al.  CSF-1R inhibition alters macrophage polarization and blocks glioma progression , 2013, Nature Medicine.

[32]  H. Kettenmann,et al.  Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response , 2013, The Journal of pathology.

[33]  David E. Anderson,et al.  Tumor-Associated Macrophages in Glioma: Friend or Foe? , 2013, Journal of oncology.

[34]  N. Abbott Blood–brain barrier structure and function and the challenges for CNS drug delivery , 2013, Journal of Inherited Metabolic Disease.

[35]  P. LaViolette,et al.  Vascular change measured with independent component analysis of dynamic susceptibility contrast MRI predicts bevacizumab response in high-grade glioma. , 2013, Neuro-oncology.

[36]  R. McLendon,et al.  Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth , 2013, Cell.

[37]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[38]  T. Acker,et al.  The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment. , 2013, Biochimica et biophysica acta.

[39]  A. Mildner,et al.  Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. , 2013, Immunity.

[40]  F. Kirchhoff,et al.  Microglia: New Roles for the Synaptic Stripper , 2013, Neuron.

[41]  G. Bergers,et al.  Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. , 2013, CNS oncology.

[42]  J. Heymach,et al.  Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. , 2012, Neuro-oncology.

[43]  R. Weinberg,et al.  Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. , 2012, Seminars in cancer biology.

[44]  M. Berger,et al.  Increased Microglia/Macrophage Gene Expression in a Subset of Adult and Pediatric Astrocytomas , 2012, PloS one.

[45]  H. Okada,et al.  Myeloid-derived Suppressor Cells (MDSCs) in Gliomas and Glioma-Development , 2012, Immunological investigations.

[46]  D. Cheresh,et al.  VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. , 2012, Cancer cell.

[47]  Peng Zhang,et al.  Tumor-Associated Microglia/Macrophages Enhance the Invasion of Glioma Stem-like Cells via TGF-β1 Signaling Pathway , 2012, The Journal of Immunology.

[48]  J. Segall,et al.  Microglial Stimulation of Glioblastoma Invasion Involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling , 2012, Molecular medicine.

[49]  A. Sloan,et al.  Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential , 2011, Cell Death and Differentiation.

[50]  Debyani Chakravarty,et al.  Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response , 2012, Proceedings of the National Academy of Sciences.

[51]  R. Ransohoff,et al.  The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood , 2012, The Journal of Immunology.

[52]  K. Ligon,et al.  Neoplastic cells are a rare component in human glioblastoma microvasculature , 2012, Oncotarget.

[53]  D. Brat Glioblastoma: biology, genetics, and behavior. , 2012, American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting.

[54]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[55]  Manfred Westphal,et al.  The neurobiology of gliomas: from cell biology to the development of therapeutic approaches , 2011, Nature Reviews Neuroscience.

[56]  H. Fine,et al.  Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. , 2011, Journal of the National Cancer Institute.

[57]  Helmut Kettenmann,et al.  The brain tumor microenvironment , 2011, Glia.

[58]  H. Ng,et al.  LABORATORY INVESTIGATION- HUMAN/ANIMAL TISSUE Clinical significance of vasculogenic mimicry in human gliomas , 2022 .

[59]  Fei Li,et al.  Glioma-initiating cells: A predominant role in microglia/macrophages tropism to glioma , 2011, Journal of Neuroimmunology.

[60]  E. Bar,et al.  Glioblastoma, Cancer Stem Cells and Hypoxia , 2011, Brain pathology.

[61]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[62]  L. Ricci-Vitiani,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[63]  Mauro Biffoni,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[64]  Rong Wang,et al.  Glioblastoma stem-like cells give rise to tumour endothelium , 2010, Nature.

[65]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[66]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[67]  A. Heimberger,et al.  Glioma cancer stem cells induce immunosuppressive macrophages/microglia. , 2010, Neuro-oncology.

[68]  R. Ransohoff,et al.  Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice , 2010, PloS one.

[69]  C. Eberhart,et al.  Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. , 2010, The American journal of pathology.

[70]  K. P. Lehre,et al.  The perivascular astroglial sheath provides a complete covering of the brain microvessels: An electron microscopic 3D reconstruction , 2010, Glia.

[71]  Tracy T Batchelor,et al.  Infiltrative patterns of glioblastoma spread detected via diffusion MRI after treatment with cediranib. , 2010, Neuro-oncology.

[72]  P. Gutin,et al.  Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma , 2009, Neurology.

[73]  Jeffrey W. Pollard,et al.  Macrophage Diversity Enhances Tumor Progression and Metastasis , 2010, Cell.

[74]  M. Wolter,et al.  A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. , 2010, Brain : a journal of neurology.

[75]  M. Frosch,et al.  Diffusion magnetic resonance imaging detects pathologically confirmed, nonenhancing tumor progression in a patient with recurrent glioblastoma receiving bevacizumab. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[76]  G. Semenza Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics , 2010, Oncogene.

[77]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[78]  M. Aghi,et al.  Mechanisms of evasion to antiangiogenic therapy in glioblastoma. , 2010, Clinical neurosurgery.

[79]  J. Engh,et al.  Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1α , 2009, Oncogene.

[80]  P. Keegan,et al.  FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. , 2009, The oncologist.

[81]  Hua Yu,et al.  Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice , 2009, Glia.

[82]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[83]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[84]  Masahiro Inoue,et al.  Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. , 2009, Cancer cell.

[85]  G. Bergers Bone Marrow-Derived Cells in GBM Neovascularization , 2009 .

[86]  N. Ferrara,et al.  Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. , 2008, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[87]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[88]  Gabriele Bergers,et al.  Modes of resistance to anti-angiogenic therapy , 2008, Nature Reviews Cancer.

[89]  S. Vandenberg,et al.  Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. , 2008, Neuro-oncology.

[90]  C. Cordon-Cardo,et al.  Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. , 2008, Cancer research.

[91]  Harald Sontheimer,et al.  A role for glutamate in growth and invasion of primary brain tumors , 2008, Journal of neurochemistry.

[92]  S. Vandenberg,et al.  HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. , 2008, Cancer cell.

[93]  F. Rossi,et al.  Local self-renewal can sustain CNS microglia maintenance and function throughout adult life , 2007, Nature Neuroscience.

[94]  M. Westphal,et al.  Hypoxia can induce c‐Met expression in glioma cells and enhance SF/HGF‐induced cell migration , 2007, International journal of cancer.

[95]  Ivan Radovanovic,et al.  HEDGEHOG-GLI1 Signaling Regulates Human Glioma Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity , 2007, Current Biology.

[96]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[97]  H. Yee,et al.  Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion , 2006, Laboratory Investigation.

[98]  J. Lennerz,et al.  Neuropathology for the neuroradiologist: palisades and pseudopalisades. , 2006, AJNR. American journal of neuroradiology.

[99]  Qiulian Wu,et al.  Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. , 2006, Cancer research.

[100]  C. Gondi,et al.  Proteases and Glioma Angiogenesis , 2005, Brain pathology.

[101]  Steven Song,et al.  The role of pericytes in blood-vessel formation and maintenance. , 2005, Neuro-oncology.

[102]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[103]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[104]  Daniel J Brat,et al.  Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma , 2004, Laboratory Investigation.

[105]  Daniel J Brat,et al.  Pseudopalisades in Glioblastoma Are Hypoxic, Express Extracellular Matrix Proteases, and Are Formed by an Actively Migrating Cell Population , 2004, Cancer Research.

[106]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[107]  A. Becker,et al.  Analysis of the TP53 gene in laser-microdissected glioblastoma vasculature , 2003, Acta Neuropathologica.

[108]  P. Allavena,et al.  Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. , 2002, Trends in immunology.

[109]  Andrew V. Nguyen,et al.  Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy , 2001, The Journal of experimental medicine.

[110]  Stanley J. Wiegand,et al.  Vascular-specific growth factors and blood vessel formation , 2000, Nature.

[111]  M. Westphal,et al.  Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. , 2000, Neoplasia.

[112]  P. Nowell Mechanisms of tumor progression. , 1986, Cancer research.