A Bibliographical Guide to Self-Similar Traffic and Performance Modeling for Modern High-Speed Netwo

This paper provides a bibliographical guide to researchers and traac engineers who are interested in self-similar traac modeling and analysis. It lists some of the most recent network traac studies and includes surveys and research papers in the areas of data analysis, statistical inference, mathematical modeling, queueing and performance analysis. It also contains references to other areas of applications (e.g., hydrology, economics, geophysics, biology and biophysics) where similar developments have taken place and where numerous results have been obtained that can often be directly applied in the network traac context. Heavy tailed distributions, their relation to self-similar modeling, and corresponding estimation techniques are also covered in this guide. A fundamental feature of self-similar or fractal phenomena is that they encompass a wide range of time scales. In the teletraac literature, the notion of burstiness is often used in this context. Mathematical models that attempt to capture and describe self-similar, fractal, or bursty phenomena in a parsimonious manner include certain self-similar stochastic processes and appropriately chosen dynamical systems. A common characteristic of these models is that their space-time dynamics is governed parsimoniously by power-law distribution functions (the "Noah EEect") and hyperbolically decaying autocorrelations(the "Joseph EEect"). In sharp contrast, traditional approaches to modeling frac-tal phenomena typically rely on highly parameterized multilevel hierarchies of conventional models which, in turn, are characterized by distribution and auto-correlation functions that decay exponentially fast. 1 2 Willinger, Taqqu and Erramilli Although bursty or fractal phenomena have been observed in virtually all branches of science and engineering, and fractal models have been applied with with some success in areas, such as hydrology, nancial economics, and bio-physics, they are new to teletraac theory and represent a recent addition to the already large class of alternative models for describing traac in packet switched networks. While most applications of fractal models in science and engineering have been based on empirical ndings, they have almost exclusively focused on the models' powerful descriptive capabilities; their engineering implications and analyses have been largely ignored, mainly because fractal models are generally viewed to be very diicult to analyze. In contrast, the success of fractal models in teletraac theory will only partly depend on how well they describe actual network traac, but will also depend to a large degree on the ability to use these models in network analysis and control. To this end, this bibliographical guide brings together many of the references that (i) report …

[1]  Nicolas D. Georganas,et al.  Analysis of an ATM buffer with self-similar ("fractal") input traffic , 1995, Proceedings of INFOCOM'95.

[2]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[3]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[4]  J. Huston McCulloch,et al.  Precise tabulation of the maximally-skewed stable distributions and densities , 1997 .

[5]  D. Halford,et al.  A general mechanical model for |f| α spectral density random noise with special reference to flicker noise 1/|f| , 1968 .

[6]  D. Panton,et al.  Cumulative distribution function values for symmetric standardized stable distributions , 1992 .

[7]  Gennady Samorodnitsky,et al.  A Class of Shot Noise Models for Financial Applications , 1996 .

[8]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[9]  Riccardo Gusella,et al.  A measurement study of diskless workstation traffic on an Ethernet , 1990, IEEE Trans. Commun..

[10]  Raj Jain,et al.  Packet Trains-Measurements and a New Model for Computer Network Traffic , 1986, IEEE J. Sel. Areas Commun..

[11]  M. Neuts A Versatile Markovian Point Process , 1979 .

[12]  N. Terrin,et al.  ESTIMATION OF THE LONG‐MEMORY PARAMETER, BASED ON A MULTIVARIATE CENTRAL LIMIT THEOREM , 1994 .

[13]  M. B. Priestley,et al.  A Test for Non‐Stationarity of Time‐Series , 1969 .

[14]  Walter Willinger,et al.  Statistical Analysis and Stochastic Modeling of Self-Similar Datatraffic , 1994 .

[15]  Hira L. Koul,et al.  Asymptotic normality of regression estimators with long memory errors , 1996 .

[16]  Nikolai N. Leonenko,et al.  Statistical Analysis of Random Fields , 1989 .

[17]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.

[18]  B. Mandelbrot Limit theorems on the self-normalized range for weakly and strongly dependent processes , 1975 .

[19]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[20]  Claudia Klüppelberg,et al.  Spectral estimates and stable processes , 1993 .

[21]  Parag Pruthi,et al.  An application of deterministic chaotic maps to model packet traffic , 1995, Queueing Syst. Theory Appl..

[22]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[23]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[24]  Walter Willinger,et al.  Efficient Traffic Performance Strategies vor Packet Multiplexers , 1990, Comput. Networks ISDN Syst..

[25]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[26]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[27]  Edwin L. Crow,et al.  Tables and graphs of the stable probability density functions , 1973 .

[28]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[29]  G. Wornell Wavelet-based representations for the 1/f family of fractal processes , 1993, Proc. IEEE.

[30]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[31]  D. Veitch,et al.  Heavy Traac Analysis of a Storage Model with Long Range Dependent On/oo Sources , 1996 .

[32]  Walter Willinger,et al.  Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks , 1994, IEEE J. Sel. Areas Commun..

[33]  Gennady Samorodnitsky,et al.  Stable fractal sums of pulses: the cylindrical case , 1995 .

[34]  J. McCulloch,et al.  Simple consistent estimators of stable distribution parameters , 1986 .

[35]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  K L Magleby,et al.  Fractal models are inadequate for the kinetics of four different ion channels. , 1988, Biophysical journal.

[37]  Ward Whitt,et al.  Tail probabilities with statistical multiplexing and effective bandwidths in multi-class queues , 1993, Telecommun. Syst..

[38]  Patrice Abry Transformées en ondelettes : analyses multirésolution et signaux de pression en turbulence , 1994 .

[39]  P. Lee,et al.  14. Simulation and Chaotic Behaviour of α‐Stable Stochastic Processes , 1995 .

[40]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[41]  Nick Duffield,et al.  Large deviations and overflow probabilities for the general single-server queue, with applications , 1995 .

[42]  Hwai-Chung Ho On limiting distributions of nonlinear functions of noisy Gaussian sequences , 1992 .

[43]  Glenn D. Rudebusch,et al.  Long Memory and Persistence in Aggregate Output , 1989, Business Cycles.

[44]  Murad S. Taqqu,et al.  A noncentral limit theorem for quadratic forms of Gaussian stationary sequences , 1990 .

[45]  Ying-Wong Cheung,et al.  Do Gold Market Returns Have Long Memory , 1993 .

[46]  P. Pawlita,et al.  Traffic Measurements in Data Networks, Recent Measurement Results, and Some Implications , 1981, IEEE Trans. Commun..

[47]  Walter Willinger,et al.  Analysis, modeling and generation of self-similar VBR video traffic , 1994, SIGCOMM.

[48]  M. Taqqu,et al.  Parameter estimation for infinite variance fractional ARIMA , 1996 .

[49]  A. Gross,et al.  Some mixing conditions for stationary symmetric stable stochastic processes , 1994 .

[50]  Murad S. Taqqu,et al.  Necessary conditions for the existence of conditional moments of stable random variables , 1995 .

[51]  Gennady Samorodnitsky,et al.  The Various Linear Fractional Lévy Motions , 1989 .

[52]  M. T. Greene,et al.  Long-term dependence in common stock returns , 1977 .

[53]  Mark William Garrett Contributions toward real-time services on packet switched networks , 1993 .

[54]  Dimitris G. Manolakis,et al.  Fractal-based modeling and interpolation of non-Gaussian images , 1994, Other Conferences.

[55]  J. R. Wallis,et al.  Some long‐run properties of geophysical records , 1969 .

[56]  A. Raftery,et al.  Space-time modeling with long-memory dependence: assessing Ireland's wind-power resource. Technical report , 1987 .

[57]  Svetlozar T. Rachev,et al.  Alternative multivariate stable distributions and their applications to financial modeling , 1991 .

[58]  Myron T. Greene,et al.  The Effect of Long Term Dependence on Risk-Return Models of Common Stocks , 1979, Oper. Res..

[59]  Ward Whitt,et al.  Long-Tail Buffer-Content Distributions in Broadband Networks , 1997, Perform. Evaluation.

[60]  John F. Shoch,et al.  Measured performance of an Ethernet local network , 1980, CACM.

[61]  Ho Hwai-Chung,et al.  On central and non-central limit theorems in density estimation for sequences of long-range dependence , 1996 .

[62]  E. H. Lloyd,et al.  Long-Term Storage: An Experimental Study. , 1966 .

[63]  C. Hurvich,et al.  ASYMPTOTICS FOR THE LOW‐FREQUENCY ORDINATES OF THE PERIODOGRAM OF A LONG‐MEMORY TIME SERIES , 1993 .

[64]  H. R. Kuensch Statistical Aspects of Self-Similar Processes , 1986 .

[65]  V. Paxson,et al.  Growth trends in wide-area TCP connections , 1994, IEEE Network.

[66]  Murad S. Taqqu,et al.  Multiple stochastic integrals with dependent integrators , 1987 .

[67]  N. Jeremy Usdin,et al.  Discrete Simulation of Colored Noise and Stochastic Processes and llf" Power Law Noise Generation , 1995 .

[68]  David M. Lucantoni,et al.  A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance , 1986, IEEE J. Sel. Areas Commun..

[69]  Ward Whitt,et al.  Waiting-time tail probabilities in queues with long-tail service-time distributions , 1994, Queueing Syst. Theory Appl..

[70]  Vaidyanathan Ramaswami,et al.  A logarithmic reduction algorithm for quasi-birth-death processes , 1993, Journal of Applied Probability.

[71]  M. Taqqu,et al.  Using Renewal Processes to Generate Long-Range Dependence and High Variability , 1986 .

[72]  I. A. Koutrouvelis An iterative procedure for the estimation of the parameters of stable laws , 1981 .

[73]  D. Surgailis,et al.  Long Memory Shot Noises and Limit Theorems with Application to Burgers’ Equation , 1993 .

[74]  Armand M. Makowski,et al.  Buffer Overflow Probabilities for a Multiplexer with Self- Similar Traffic , 1995 .

[75]  D. Surgailis,et al.  Multivariate Appell polynomials and the central limit theorem , 1986 .

[76]  Will E. Leland,et al.  High time-resolution measurement and analysis of LAN traffic: Implications for LAN interconnection , 1991, IEEE INFCOM '91. The conference on Computer Communications. Tenth Annual Joint Comference of the IEEE Computer and Communications Societies Proceedings.

[77]  A. S. French,et al.  Fractal and Markov behavior in ion channel kinetics. , 1988, Canadian journal of physiology and pharmacology.

[78]  J. Huston McCulloch,et al.  13 Financial applications of stable distributions , 1996 .

[79]  Murad S. Taqqu,et al.  Central limit theorems for quadratic forms with time-domain conditions , 1998 .

[80]  M. A. Arcones,et al.  Limit Theorems for Nonlinear Functionals of a Stationary Gaussian Sequence of Vectors , 1994 .

[81]  Larry S. Liebovitch,et al.  Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes , 1987 .

[82]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[83]  R. Leipus,et al.  A generalized fractionally differencing approach in long-memory modeling , 1995 .

[84]  Nick G. Duffield,et al.  Exponential bounds for queues with Markovian arrivals , 1994, Queueing Syst. Theory Appl..

[85]  Walter Wyss Fractional noise , 1991 .

[86]  P. Robinson Semiparametric Analysis of Long-Memory Time Series , 1994 .

[87]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[88]  W. Feller The Asymptotic Distribution of the Range of Sums of Independent Random Variables , 1951 .

[89]  A. C. Davison,et al.  Some simple properties of sums of random variables having long-range dependence , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[90]  R. Gusella A characterization of the variability of packet arrival processes in workstation networks , 1991 .

[91]  J. Huston McCulloch Numerical approximation of the symmetric stable distribution and density , 1998 .

[92]  Walter Willinger,et al.  FRACTAL TRAFFIC FLOWS IN HIGH-SPEED COMMUNICATIONS NETWORKS , 1994 .

[93]  Ward Whitt,et al.  Dependence in packet queues , 1989, IEEE Trans. Commun..

[94]  kc claffy,et al.  Application of sampling methodologies to network traffic characterization , 1993, SIGCOMM 1993.

[95]  George C. Polyzos,et al.  Tracking long-term growth of the NSFNET , 1994, CACM.

[96]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[97]  Tze Chien Sun,et al.  A mixture-type limit theorem for nonlinear functions of Gaussian sequences , 1991 .

[98]  Claudia Klüppelberg,et al.  The integrated periodogram for stable processes , 1996 .

[99]  A. Erramilli,et al.  Self-similar traffic parameter estimation: a semi-parametric periodogram-based algorithm , 1995, Proceedings of GLOBECOM '95.

[100]  Piotr Kokoszka,et al.  Infinite variance stable moving averages with long memory , 1996 .

[101]  M. S. Peiris,et al.  ON PREDICTION WITH FRACTIONALLY DIFFERENCED ARIMA MODELS , 1988 .

[102]  P. Robinson,et al.  11 Autocorrelation-robust inference , 1997 .

[103]  Amarnath Mukherjee,et al.  On resource management and QoS guarantees for long range dependent traffic , 1995, Proceedings of INFOCOM'95.

[104]  D. Mitra,et al.  Stochastic theory of a data-handling system with multiple sources , 1982, The Bell System Technical Journal.

[105]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[106]  Murad S. Taqqu,et al.  ON THE EFFICIENCY OF THE SAMPLE MEAN IN LONG‐MEMORY NOISE , 1988 .

[107]  Piotr Kokoszka,et al.  The asymptotic behavior of quadratic forms in heavy-tailed strongly dependent random variables☆ , 1997 .

[108]  David M. Lucantoni,et al.  The BMAP/G/1 QUEUE: A Tutorial , 1993, Performance/SIGMETRICS Tutorials.

[109]  Teich,et al.  Doubly stochastic Poisson point process driven by fractal shot noise. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.

[110]  Parag Pruthi,et al.  An Application of Chaotic Maps to Packet Traffic Modelling , 1995 .

[111]  Dankit Nassiuma SYMMETRIC STABLE SEQUENCES WITH MISSING OBSERVATIONS , 1994 .

[112]  C. Klüppelberg,et al.  PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS , 1995 .

[113]  Yoshihiro Yajima,et al.  On Estimation of a Regression Model with Long-Memory Stationary Errors , 1988 .

[114]  C. Klüppelberg,et al.  Self-normalized and randomly centered spectral estimates , 1996 .

[115]  Péter Major,et al.  Multiple Wiener–Itô Integrals , 1981 .

[116]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .

[117]  Nick G. Duffield,et al.  Entropy of ATM Traffic Streams: A Tool for Estimating QoS Parameters , 1995, IEEE J. Sel. Areas Commun..

[118]  D. B. Cline,et al.  Linear prediction of ARMA processes with infinite variance , 1985 .

[119]  S. Cambanis,et al.  Prediction of stable processes: Spectral and moving average representations , 1984 .

[120]  P. Glynn,et al.  Logarithmic asymptotics for steady-state tail probabilities in a single-server queue , 1994, Journal of Applied Probability.

[121]  Murad S. Taqqu,et al.  Testing for long‐range dependence in the presence of shifting means or a slowly declining trend, using a variance‐type estimator , 1997 .

[122]  Mark A. Rosenstein,et al.  Analyzing Telecommunications Traffic Data from Working Common Channel Signaling Subnetworks , 1993 .

[123]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[124]  Richard A. Davis,et al.  Gauss-Newton and M-estimation for ARMA processes with infinite variance , 1996 .

[125]  P. E. Kopp,et al.  Stock Price Returns and the Joseph Effect: A Fractional Version of the Black-Scholes Model , 1995 .

[126]  B. Mandelbrot Long-Run Linearity, Locally Gaussian Process, H-Spectra and Infinite Variances , 1969 .

[127]  Sally Floyd,et al.  Wide-Area Traffic: The Failure of Poisson Modeling , 1994, SIGCOMM.

[128]  Walter WillingerBellcoreMorristown A Case for Fractal Traac Modeling , 1996 .

[129]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[130]  Piotr Kokoszka,et al.  Asymptotic Dependence of Stable Self-Similar Processes of Chentsov Type , 1992 .

[131]  Hira L. Koul,et al.  Asymptotics of R-, MD- and LAD-estimators in linear regression models with long range dependent errors , 1993 .

[132]  J. Beran A Goodness‐Of‐Fit Test for Time Series with Long Range Dependence , 1992 .

[133]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[134]  B. Mandelbrot THE PARETO-LEVY LAW AND THE DISTRIBUTION OF INCOME* , 1960 .

[135]  E. Fama Mandelbrot and the Stable Paretian Hypothesis , 1963 .

[136]  M. Casdagli Chaos and Deterministic Versus Stochastic Non‐Linear Modelling , 1992 .

[137]  Svetlozar T. Rachev,et al.  Stable distributions for asset returns , 1989 .

[138]  L. Liebovitch Testing fractal and Markov models of ion channel kinetics. , 1989, Biophysical journal.

[139]  Sidney I. Resnick,et al.  Heavy Tail Modelling and Teletraffic Data , 1995 .

[140]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[141]  Fallaw Sowell Modeling long-run behavior with the fractional ARIMA model , 1992 .

[142]  Ilkka Norros,et al.  A storage model with self-similar input , 1994, Queueing Syst. Theory Appl..

[143]  Richard A. Davis,et al.  M-estimation for autoregressions with infinite variance , 1992 .

[144]  W. DuMouchel Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples , 1975 .

[145]  L S Liebovitch,et al.  Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. , 1987, Biophysical journal.

[146]  Vern Paxson,et al.  Empirically derived analytic models of wide-area TCP connections , 1994, TNET.

[147]  Murad S. Taqqu,et al.  Semi-parametric graphical estimation techniques for long-memory data. , 1996 .

[148]  Samuel P. Morgan,et al.  Statistics of Mixed Data Traffic on a Local Area Network , 1986, Comput. Networks.

[149]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[150]  A. Erramilli,et al.  Self-similar traffic generation: the random midpoint displacement algorithm and its properties , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[151]  N. Georganas,et al.  Analysis of an Atm Buuer with Self-similar("fractal") Input Traac , 1995 .

[152]  San-qi Li,et al.  On input state space reduction and buffer noneffective region , 1994, Proceedings of INFOCOM '94 Conference on Computer Communications.

[153]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[154]  J. Cohen SOME RESULTS ON REGULAR VARIATION FOR DISTRIBUTIONS IN QUEUEING AND FLUCTUATION THEORY , 1973 .

[155]  Ward Whitt,et al.  Investigating dependence in packet queues with the index of dispersion for work , 1991, IEEE Trans. Commun..

[156]  Hwai-Chung Ho On the strong uniform consistency of density estimation for strongly dependent sequences , 1995 .

[157]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[158]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[159]  Fallaw Sowell,et al.  The Fractional Unit Root Distribution , 1990 .

[160]  C. Heyde Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence , 1993 .

[161]  Peter B. Danzig,et al.  Characteristics of wide-area TCP/IP conversations , 1991, SIGCOMM 1991.

[162]  Parag Pruthi,et al.  Chaotic Maps As Models of Packet Traffic , 1994 .

[163]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[164]  Piotr Kokoszka,et al.  The integrated periodogram for long-memory processes with finite or infinite variance , 1997 .

[165]  H. Hurst METHODS OF USING LONG-TERM STORAGE IN RESERVOIRS. , 1956 .

[166]  T. V. Lakshman,et al.  Fundamental Bounds and Approximations for ATM Multiplexers with Applications to Video Teleconferencing , 1995, IEEE J. Sel. Areas Commun..

[167]  D. Saupe Algorithms for random fractals , 1988 .

[168]  Dimitris G. Manolakis,et al.  INFRARED SCENE MODELING AND INTERPOLATION USING FRACTIONAL LÉVY STABLE MOTION , 1994 .

[169]  Duane C. Boes,et al.  Hurst Behavior of Shifting Level Processes , 1985 .

[170]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[171]  M. Taqqu A Bibliographical Guide to Self-Similar Processes and Long-Range Dependence , 1986 .

[172]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[173]  Glenn D. Rudebusch,et al.  On the Power of Dickey-Fuller Tests against Fractional Alternatives , 1991, Business Cycles.

[174]  L S Liebovitch,et al.  Fractal model of ion-channel kinetics. , 1987, Biochimica et biophysica acta.

[175]  Richard F. Voss,et al.  Fractals in nature: from characterization to simulation , 1988 .

[176]  S. Giordano,et al.  Long-range dependence in Ethernet traffic offered to interconnected DQDB MANs , 1994, Proceedings of ICCS '94.

[177]  D. Surgailis,et al.  A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle's estimate , 1990 .

[178]  Jan Beran,et al.  A test of location for data with slowly decaying serial correlations , 1989 .

[179]  T. Sun,et al.  A central limit theorem for non-instantaneous filters of a stationary Gaussian Process , 1987 .

[180]  Alan Weiss,et al.  An Introduction to Large Deviations for Communication Networks , 1995, IEEE J. Sel. Areas Commun..

[181]  Murad S. Taqqu,et al.  Robustness of whittle-type estimators for time series with long-range dependence , 1997 .

[182]  Benjamin Melamed,et al.  An Overview of Tes Processes and Modeling Methodology , 1993, Performance/SIGMETRICS Tutorials.

[183]  S. Resnick,et al.  The qq-estimator and heavy tails , 1996 .

[184]  Sidney I. Resnick,et al.  More limit theory for the sample correlation function of moving averages , 1985 .

[185]  Murad S. Taqqu,et al.  A Characterization of the Asymptotic Behavior of Stationary Stable Processes , 1991 .

[186]  Malvin Carl Teich,et al.  Power-law shot noise , 1990, IEEE Trans. Inf. Theory.

[187]  T. V. Lakshman,et al.  Statistical analysis and simulation study of video teleconference traffic in ATM networks , 1992, IEEE Trans. Circuits Syst. Video Technol..

[188]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[189]  Ward Whitt,et al.  Characterizing Superposition Arrival Processes in Packet Multiplexers for Voice and Data , 1986, IEEE J. Sel. Areas Commun..

[190]  Bonnie K. Ray,et al.  ESTIMATION OF THE MEMORY PARAMETER FOR NONSTATIONARY OR NONINVERTIBLE FRACTIONALLY INTEGRATED PROCESSES , 1995 .

[191]  A. Pakes ON THE TAILS OF WAITING-TIME DISTRIBUTIONS , 1975 .

[192]  Aurel A. Lazar,et al.  Subexponential Asymptotics of a Network Multiplexer , 1995 .

[193]  S. D. Jost,et al.  On Synthesizing Discrete Fractional Brownian Motion with Applications to Image Processing , 1996, CVGIP Graph. Model. Image Process..

[194]  Claudia Klüppelberg,et al.  Some Limit Theory for the Self-normalised Periodogram of Stable Processes , 1994 .

[195]  Dimitris G. Manolakis,et al.  Linear parametric models for signals with long-range dependence and infinite variance , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[196]  F. Diebold,et al.  On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean , 1994 .

[197]  Murad S. Taqqu,et al.  On the Self-Similar Nature of Ethernet Traffic , 1993, SIGCOMM.

[198]  Jean C. Walrand,et al.  Resource Management in Wide-Area ATM Networks Using Effective Bandwiths , 1995, IEEE J. Sel. Areas Commun..

[199]  N. Duffield,et al.  Economies of scale in queues with sources having power-law large deviation scalings , 1996, Journal of Applied Probability.

[200]  Murad S. Taqqu,et al.  Sufficient Conditions for the Existence of Conditional Moments of Stable Random Variables , 1998 .

[201]  Ilkka Norros,et al.  On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks , 1995, IEEE J. Sel. Areas Commun..

[202]  John N. Tsitsiklis,et al.  Statistical Multiplexing of Multiple Time-Scale Markov Streams , 1995, IEEE J. Sel. Areas Commun..

[203]  Georges Oppenheim,et al.  LONG-RANGE DEPENDENCE AND MIXING FOR DISCRETE TIME FRACTIONAL PROCESSES , 1995 .

[204]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[205]  L. Giraitis Central limit theorem for polynomial forms. I , 1989 .

[206]  P. Robinson,et al.  AUTOMATIC FREQUENCY DOMAIN INFERENCE ON SEMIPARAMETRIC AND NONPARAMETRIC MODELS , 1991 .

[207]  Teich,et al.  Fractal renewal processes generate 1/f noise. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[208]  L. M. Berliner,et al.  Statistics, Probability and Chaos , 1992 .

[209]  H. Takayasu f -β Power Spectrum and Stable Distribution , 1987 .

[210]  P. Robinson,et al.  Time series regression with long-range dependence , 1997 .

[211]  D. Buckle Bayesian Inference for Stable Distributions , 1995 .

[212]  Bonnie K. Ray,et al.  MODELING LONG‐MEMORY PROCESSES FOR OPTIMAL LONG‐RANGE PREDICTION , 1993 .

[213]  Piotr Kokoszka,et al.  New classes of self-similar symmetric stable random fields , 1994 .

[214]  San-qi Li,et al.  Queue response to input correlation functions: discrete spectral analysis , 1993, TNET.

[215]  R. Dahlhaus Efficient Location and Regression Estimation for Long Range Dependent Regression Models , 1995 .

[216]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[217]  Clifford M. Hurvich,et al.  AUTOMATIC SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF A LONG‐MEMORY TIME SERIES , 1994 .

[218]  B. Mandelbrot,et al.  A CLASS OF MICROPULSES AND ANTIPERSISTENT FRACTIONAL BROWNIAN MOTION , 1995 .

[219]  B. Conolly Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1991 .

[220]  M. Taqqu,et al.  The asymptotic dependence structure of the linear fractional Lévy motion , 1991 .

[221]  Tim Bollerslev,et al.  Cointegration, Fractional Cointegration, and Exchange Rate Dynamics , 1994 .

[222]  P. Pruthi,et al.  Heavy-tailed on/off source behavior and self-similar traffic , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[223]  Richard J. Gibbens,et al.  Effective bandwidths for the multi-type UAS channel , 1991, Queueing Syst. Theory Appl..

[224]  Miron Livny,et al.  The Impact of Autocorrelation on Queuing Systems , 1993 .

[225]  M. Taqqu,et al.  Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation , 1997 .

[226]  W. DuMouchel Estimating the Stable Index $\alpha$ in Order to Measure Tail Thickness: A Critique , 1983 .

[227]  L. Giraitis Central limit theorem for functionals of a linear process , 1985 .

[228]  E. Montroll,et al.  On 1/f noise and other distributions with long tails. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[229]  A. Erramilli,et al.  Monitoring packet traffic levels , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[230]  Walter Willinger,et al.  Traffic modeling for high-speed networks: theory versus practice , 1995 .

[231]  H. Stanley,et al.  Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. , 1995, Chaos.

[232]  S. Kay,et al.  Fractional Brownian Motion: A Maximum Likelihood Estimator and Its Application to Image Texture , 1986, IEEE Transactions on Medical Imaging.

[233]  M. Taqqu,et al.  Central limit theorems for quadratic forms in random variables having long-range dependence , 1987 .

[234]  V V. Gorodetskii,et al.  On Convergence to Semi-Stable Gaussian Processes , 1978 .

[235]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[236]  Mark Crovella,et al.  Self-Similarity in World Wide Web Traffic: Evidence and Causes , 1996, SIGMETRICS.

[237]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[238]  Michael Devetsikiotis,et al.  Modeling and simulation of self-similar variable bit rate compressed video: a unified approach , 1995, SIGCOMM '95.

[239]  Steven A. Heimlich Traffic characteristics of the NSFNET national backbone 1 2 3 , 1990 .

[240]  Venkat Anantharam,et al.  Optimal flow control schemes that regulate the burstiness of traffic , 1995, TNET.

[241]  S. Rachev,et al.  Modeling asset returns with alternative stable distributions , 1993 .

[242]  W. DuMouchel On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution , 1973 .

[243]  강태원,et al.  [서평]「Chaos and Fractals : New Frontiers of Science」 , 1998 .

[244]  Piotr Kokoszka,et al.  Fractional ARIMA with stable innovations , 1995 .

[245]  P. Whittle,et al.  Hypothesis-Testing in Time Series Analysis. , 1952 .

[246]  Riccardo Gusella,et al.  Characterizing the Variability of Arrival Processes with Indexes of Dispersion , 1991, IEEE J. Sel. Areas Commun..

[247]  P. Robinson,et al.  Rates of convergence and optimal spectral bandwidth for long range dependence , 1994 .

[248]  Benoit B. Mandelbrot,et al.  Self-Similar Error Clusters in Communication Systems and the Concept of Conditional Stationarity , 1965 .

[249]  Murad S. Taqqu,et al.  Convergence to a Gaussian limit as the normalization exponent tends to , 1991 .

[250]  Richard T. Baillie,et al.  Small sample bias in conditional sum-of-squares estimators of fractionally integrated ARMA models , 1993 .

[251]  D. Panton Distribution function values for logstable distributions , 1993 .

[252]  Gregory W. Wornell,et al.  Wavelet-based representations for a class of self-similar signals with application to fractal modulation , 1992, IEEE Trans. Inf. Theory.

[253]  Jonathan R. M. Hosking,et al.  Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series , 1996 .

[254]  Frank P. Kelly,et al.  Effective bandwidths at multi-class queues , 1991, Queueing Syst. Theory Appl..

[255]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[256]  V. Reisen,et al.  ESTIMATION OF THE FRACTIONAL DIFFERENCE PARAMETER IN THE ARIMA(p, d, q) MODEL USING THE SMOOTHED PERIODOGRAM , 1994 .

[257]  Henry J. Fowler,et al.  Local Area Network Traffic Characteristics, with Implications for Broadband Network Congestion Management , 1991, IEEE J. Sel. Areas Commun..

[258]  Kimmo E. E. Raatikainen,et al.  Symptoms of Self-Similarity in Measured Arrival Process of Ethernet Packets to A File Server , 1994 .

[259]  Walter Willinger,et al.  Self-Similarity in High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measurements , 1995 .

[260]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[261]  D. Surgailis On Poisson multiple stochastic integrals and associated equilibrium Markov processes , 1983 .

[262]  F. Comte,et al.  Long memory continuous time models , 1996 .

[263]  Vern Paxson,et al.  Fast approximation of self-similar network traffic , 1995, SIGCOMM 1995.

[264]  L. Burlaga,et al.  Fractal structure of the interplanetary magnetic field , 1986 .

[265]  Sidney I. Resnick,et al.  Tail estimates motivated by extreme-value theory , 1985 .

[266]  Amarnath Mukherjee,et al.  On the Dynamics and Significance of Low Frequency Components of Internet Load , 1992 .

[267]  Marc Henry,et al.  Bandwidth Choice in Gaussian Semiparametric Estimation of Long Range Dependence , 1996 .

[268]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[269]  Jan Beran,et al.  Contrasts under long-range correlations , 1993 .

[270]  A. I. McLeod,et al.  Preservation of the rescaled adjusted range: 3. Fractional Gaussian noise algorithms , 1978 .

[271]  Gennady Samorodnitsky,et al.  Performance Decay in a Single Server Exponential Queueing Model with Long Range Dependence , 1997, Oper. Res..

[272]  Yoshihiro Yajima,et al.  Asymptotic Properties of the LSE in a Regression Model with Long-Memory Stationary Errors , 1991 .

[273]  Liudas Giraitis,et al.  RATE OPTIMAL SEMIPARAMETRIC ESTIMATION OF THE MEMORY PARAMETER OF THE GAUSSIAN TIME SERIES WITH LONG‐RANGE DEPENDENCE , 1997 .

[274]  Murad S. Taqqu,et al.  Some long‐run properties of rainfall records in Italy , 1996 .

[275]  Paul Newbold,et al.  LAGRANGE MULTIPLIER TESTS FOR FRACTIONAL DIFFERENCE , 1994 .

[276]  Hugh G. Gauch,et al.  Prediction, Parsimony and Noise , 1993 .

[277]  A. Descloux CONTENTION PROBABILITIES IN PACKET SWITCHING NETWORKS WITH STRUNG INPUT PROCESSES , 1988 .

[278]  E. H. Lloyd,et al.  The expected value of the adjusted rescaled Hurst range of independent normal summands , 1976 .

[279]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[280]  B. Melamed,et al.  Traffic modeling for telecommunications networks , 1994, IEEE Communications Magazine.

[281]  Eric V. Slud Some applications of counting process models with partially observed covariates , 1997, Telecommun. Syst..

[282]  Walter Willinger,et al.  Applications of Fractals in Engineering for Realistic Traffic Processes , 1994 .

[283]  Venkat Anantharam On the sojourn time of sessions at an ATM buffer with long-range dependent input traffic , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[284]  J. Hosking Modeling persistence in hydrological time series using fractional differencing , 1984 .

[285]  Scott L. Painter,et al.  Fractional Lévy motion as a model for spatial variability in sedimentary rock , 1994 .

[286]  B. Mandelbrot A Fast Fractional Gaussian Noise Generator , 1971 .

[287]  Bovas Abraham,et al.  LAG WINDOW ESTIMATION OF THE DEGREE OF DIFFERENCING IN FRACTIONALLY INTEGRATED TIME SERIES MODELS , 1994 .

[288]  J. Beran Statistical methods for data with long-range dependence , 1992 .

[289]  Walter Willinger,et al.  Long-range dependence in variable-bit-rate video traffic , 1995, IEEE Trans. Commun..

[290]  Fabienne Comte,et al.  SIMULATION AND ESTIMATION OF LONG MEMORY CONTINUOUS TIME MODELS , 1996 .

[291]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[292]  Ward Whitt,et al.  On the effectiveness of effective bandwidths for admission control in ATM networks , 1994 .

[293]  P. Robinson,et al.  Nonparametric function estimation for long memory time series , 1991 .

[294]  Jean C. Walrand,et al.  Effective bandwidths for multiclass Markov fluids and other ATM sources , 1993, TNET.

[295]  Murad S. Taqqu,et al.  Convergence in distribution of sums of bivariate Appell polynomials with long-range dependence , 1991 .

[296]  Debasis Mitra,et al.  Effective bandwidth of general Markovian traffic sources and admission control of high speed networks , 1993, IEEE INFOCOM '93 The Conference on Computer Communications, Proceedings.

[297]  Peter Schmidt,et al.  The Minimum Distance Estimator for Fractionally Integrated ARMA Models , 1994 .

[298]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[299]  S. Resnick,et al.  Consistency of Hill's estimator for dependent data , 1995, Journal of Applied Probability.

[300]  E. H. Lloyd,et al.  The discrete Hurst range for skew independent two-valued inflows , 1987 .

[301]  H. Schuster Deterministic chaos: An introduction , 1984 .

[302]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[303]  Gennady Samorodnitsky,et al.  Option pricing formulae for speculative prices modelled by subordinated stochastic processes , 1991 .

[304]  Philippe Heinrich,et al.  Zero-one laws for polynomials in Gaussian random variables: A simple proof , 1996 .

[305]  Vladimir A. Bolotin Modeling call holding time distributions for CCS network design and performance analysis , 1994, IEEE J. Sel. Areas Commun..

[306]  Piotr Kokoszka,et al.  INFINITE VARIANCE STABLE ARMA PROCESSES , 1994 .

[307]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[308]  Piotr Kokoszka,et al.  Asymptotic dependence of moving average type self-similar stable random Fields , 1993, Nagoya Mathematical Journal.

[309]  E. Willekens,et al.  Asymptotic expansions for waiting time probabilities in an M/G/1 queue with long-tailed service time , 1992, Queueing Syst. Theory Appl..

[310]  Hamid Ahmadi,et al.  Equivalent Capacity and Its Application to Bandwidth Allocation in High-Speed Networks , 1991, IEEE J. Sel. Areas Commun..

[311]  Michael Devetsikiotis,et al.  Fast simulation for self-similar traffic in ATM networks , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[312]  S. Cambanis,et al.  On prediction of heavy-tailed autoregressive sequences: forward versus reversed time , 1995 .

[313]  Stamatis Cambanis,et al.  Multiple regression on stable vectors , 1992 .

[314]  Edgar E. Peters Chaos and order in the capital markets , 1991 .

[315]  Ying-Wong Cheung,et al.  TESTS FOR FRACTIONAL INTEGRATION: A MONTE CARLO INVESTIGATION , 1993 .

[316]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[317]  Ying-Wong Cheung,et al.  Long Memory in Foreign-Exchange Rates , 1993 .

[318]  J. R. Wallis,et al.  Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence , 1969 .

[319]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[320]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[321]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[322]  Moshe Zukerman,et al.  A Gaussian traffic model for a B-ISDN statistical multiplexer , 1992, [Conference Record] GLOBECOM '92 - Communications for Global Users: IEEE.

[323]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[324]  Tailen Hsing,et al.  ON THE ASYMPTOTIC EXPANSION OF THE EMPIRICAL PROCESS OF LONG-MEMORY MOVING AVERAGES , 1996 .