Existence and Concentration of Semiclassical Solutions for Dirac Equations with Critical Nonlinearities

We study the semiclassical ground states of the Dirac equation with critical nonlinearity: $-i\hbar\alpha\cdot\nabla w + a\beta w +V(x)w= W(x)(g(|w|)+|w|)w$ for $x\in\mathbb{R}^3$. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. We develop an argument to establish the existence of least energy solutions for $\hbar$ small. We also describe the concentration phenomena of the solutions as $\hbar\to 0$.

[1]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[2]  M. Esteban,et al.  Stationary states of the nonlinear Dirac equation: A variational approach , 1995 .

[3]  F. Merle Existence of stationary states for nonlinear Dirac equations , 1988 .

[4]  A. Pankov Periodic Nonlinear Schrödinger Equation with Application to Photonic Crystals , 2004 .

[5]  Juncheng Wei,et al.  Stationary States of Nonlinear Dirac Equations with General Potentials , 2008 .

[6]  Nils Ackermann,et al.  A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations , 2006 .

[7]  Jaeyoung Byeon,et al.  Standing Waves for Nonlinear Schrödinger Equations with a General Nonlinearity , 2007 .

[8]  B. Simon,et al.  Schrödinger Semigroups , 2007 .

[9]  P. Felmer,et al.  Semi-classical states of nonlinear Schrödinger equations: a variational reduction method , 2002 .

[10]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[11]  Antonio Ambrosetti,et al.  Perturbation Methods and Semilinear Elliptic Problems on R^n , 2005 .

[12]  Mathieu Lewin,et al.  Variational methods in relativistic quantum mechanics , 2007, 0706.3309.

[13]  Nils Ackermann,et al.  On a periodic Schrödinger equation with nonlocal superlinear part , 2004 .

[14]  Yanheng Ding,et al.  Deformation theorems on non‐metrizable vector spaces and applications to critical point theory , 2006 .

[15]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[16]  Alan Weinstein,et al.  Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential , 1986 .

[17]  A. Rañada,et al.  Classical Nonlinear Dirac Field Models of Extended Particles , 1983 .

[18]  Tobias Weth,et al.  Ground state solutions for some indefinite variational problems , 2009 .

[19]  Paul H. Rabinowitz,et al.  Homoclinic type solutions for a semilinear elliptic PDE on ℝn , 1992 .

[20]  A. Douady,et al.  Existence of excited states for a nonlinear Dirac field , 1988 .

[21]  Yanheng Ding,et al.  Solutions of nonlinear Dirac equations , 2006 .

[22]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[23]  Yanheng Ding Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation , 2010 .

[24]  Yanheng Ding,et al.  Solutions of a Nonlinear Dirac Equation with External Fields , 2008 .

[25]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[26]  Bernd Thaller,et al.  The Dirac Equation , 1992 .

[27]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[28]  Yanheng Ding,et al.  Variational Methods for Strongly Indefinite Problems , 2007, Interdisciplinary Mathematical Sciences.

[29]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .