Flatland Optics with Hyperbolic Metasurfaces

In this Perspective, we discuss the physics and potential applications of planar hyperbolic metasurfaces (MTSs), with emphasis on their in-plane and near-field responses. After revisiting the governing dispersion relation and properties of the supported surface plasmon polaritons (SPPs), we discuss the different topologies that uniaxial MTSs can implement. Particular attention is devoted to the hyperbolic regime, which exhibits unusual features, such as an ideally infinite wave confinement and local density of states. In this context, we clarify the different physical mechanisms that limit the practical implementation of these ideal concepts using materials found in nature, and we describe several approaches to realize hyperbolic MTSs, ranging from the use of novel 2D materials such as black phosphorus to artificial nanostructured composites made of graphene or silver. Some exciting phenomena and applications are then presented and discussed, including negative refraction and the routing of SPPs within th...

[1]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[2]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[3]  A. Grbic,et al.  Modeling and Analysis of Printed-Circuit Tensor Impedance Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[4]  Y. Kivshar,et al.  Wire Metamaterials: Physics and Applications , 2012, Advanced materials.

[5]  Pavel Ginzburg,et al.  Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes , 2014, Nature Communications.

[6]  Andrea Alù,et al.  Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. , 2013, Optics express.

[7]  Xiang Zhang,et al.  Metasurfaces for manipulating surface plasmons , 2013 .

[8]  Evgenii E. Narimanov,et al.  Naturally hyperbolic , 2015, Nature Photonics.

[9]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[10]  D. Correas-Serrano,et al.  Nonlocal response of hyperbolic metasurfaces. , 2015, Optics express.

[11]  I. Iorsh,et al.  2-dimensional hyperbolic medium for electrons and photons based on the array of tunnel-coupled graphene nanoribbons , 2015, 1504.02130.

[12]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[13]  Koray Aydin,et al.  Localized surface plasmons in nanostructured monolayer black phosphorus , 2016, 2016 IEEE Photonics Conference (IPC).

[14]  Y. Kivshar,et al.  Hybrid waves localized at hyperbolic metasurfaces , 2015, 1502.07468.

[15]  M. Francoeur,et al.  Near-field thermal emission from metamaterials , 2013 .

[16]  Paolo Burghignoli,et al.  Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene , 2013 .

[17]  A. Alvarez-Melcon,et al.  Nonreciprocal Graphene Devices and Antennas Based on Spatiotemporal Modulation , 2016, IEEE Antennas and Wireless Propagation Letters.

[18]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[19]  R. Fleury,et al.  Unidirectional Cloaking Based on Metasurfaces with Balanced Loss and Gain , 2015 .

[20]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[21]  V. Podolskiy,et al.  Hyperbolic metamaterials: new physics behind a classical problem. , 2013, Optics express.

[22]  M. Goldflam,et al.  Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. , 2015, Nature nanotechnology.

[23]  J. S. Gomez-Diaz,et al.  Graphene-based plasmonic switches at near infrared frequencies. , 2013, Optics express.

[24]  Fengnian Xia,et al.  Plasmons and screening in monolayer and multilayer black phosphorus. , 2014, Physical review letters.

[25]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[26]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[27]  J. S. Gomez-Diaz,et al.  Hyperbolic metasurfaces: Surface plasmons, light-matter interactions, and physical implementation using graphene strips , 2015 .

[28]  E. Narimanov,et al.  Realization of mid-infrared graphene hyperbolic metamaterials , 2016, Nature Communications.

[29]  J. Perruisseau-Carrier,et al.  Propagation of hybrid transverse magnetic-transverse electric plasmons on magnetically biased graphene sheets , 2012 .

[30]  A. Salandrino,et al.  Electrodynamical Light Trapping Using Whispering-Gallery Resonances in Hyperbolic Cavities , 2014 .

[31]  Phaedon Avouris,et al.  Tunable Light-Matter Interaction and the Role of Hyperbolicity in Graphene-hBN System. , 2015, Nano letters.

[32]  N. Litchinitser,et al.  Indefinite by Nature: From Ultraviolet to Terahertz , 2014 .

[33]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[34]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[35]  G. Wiederrecht,et al.  Inhomogeneous Surface Plasmon Polaritons , 2014 .

[36]  Lei Zhou,et al.  Tubular optical microcavities of indefinite medium for sensitive liquid refractometers. , 2016, Lab on a chip.

[37]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[38]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[39]  Lin Gan,et al.  Graphene surface plasmon polaritons transport on curved substrates , 2015 .

[40]  Martijn Wubs,et al.  Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity , 2012, 1204.5413.

[41]  Guided waves on a planar tensor impedance surface , 2003 .

[42]  E. Narimanov,et al.  Optical hyperspace for plasmons: Dyakonov states in metamaterials , 2008, 2009 IEEE LEOS Annual Meeting Conference Proceedings.

[43]  Kyoung-Ho Kim,et al.  Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency , 2015, Scientific Reports.

[44]  Alejandro Alvarez-Melcon,et al.  Electrically and Magnetically Biased Graphene-Based Cylindrical Waveguides: Analysis and Applications as Reconfigurable Antennas , 2015, IEEE Transactions on Terahertz Science and Technology.

[45]  D. Pawlak,et al.  Compendium of natural hyperbolic materials. , 2015, Optics express.

[46]  Alejandro Álvarez Melcón,et al.  On the Influence of Spatial Dispersion on the Performance of Graphene-Based Plasmonic Devices , 2014, IEEE Antennas and Wireless Propagation Letters.

[47]  Alejandro Álvarez Melcón,et al.  Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization , 2016, 1608.01617.

[48]  Zubin Jacob,et al.  Broadband super-planckian thermal emission from hyperbolic metamaterials , 2013, CLEO: 2013.

[49]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[50]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[51]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[52]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[53]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[54]  Yang Wang,et al.  Foundations of Plasmonics , 2011 .

[55]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[56]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[57]  Filippo Capolino,et al.  Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption. , 2013, Optics express.

[58]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[59]  Bo Zhen,et al.  Shrinking light to allow forbidden transitions on the atomic scale , 2016, Science.

[60]  Oliver G Schmidt,et al.  Combined surface plasmon and classical waveguiding through metamaterial fiber design. , 2010, Nano letters.

[61]  Steven G. Johnson,et al.  Effectiveness of thin films in lieu of hyperbolic metamaterials in the near field. , 2013, Physical review letters.

[62]  J. S. Gomez-Diaz,et al.  Nonlinear Processes in Multi-Quantum-Well Plasmonic Metasurfaces:Electromagnetic Response, Saturation Effects, Limits and Potentials , 2015, 1506.07095.

[63]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[64]  S. Tretyakov,et al.  Simple and Accurate Analytical Model of Planar Grids and High-Impedance Surfaces Comprising Metal Strips or Patches , 2007, IEEE Transactions on Antennas and Propagation.

[65]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[66]  Z. Jacob,et al.  Thermal hyperbolic metamaterials , 2013 .

[67]  Ebrahim Forati,et al.  Planar hyperlens based on a modulated graphene monolayer , 2013, 1311.4791.

[68]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[69]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[70]  Andrea Alù,et al.  Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials , 2013, Nature Communications.

[71]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[72]  Andrea Alù,et al.  Negative refraction and planar focusing based on parity-time symmetric metasurfaces. , 2014, Physical review letters.

[73]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[74]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[75]  A. Ferreira,et al.  Confined magneto-optical waves in graphene , 2012, 1202.1666.

[76]  D. Akinwande,et al.  Graphene-Based Plasmonic Platform for Reconfigurable Terahertz Nanodevices , 2014 .

[77]  Luis Martín-Moreno,et al.  Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. , 2013, ACS nano.

[78]  R. Hillenbrand,et al.  Plasmons in Cylindrical 2D Materials as a Platform for Nanophotonic Circuits , 2015 .

[79]  Ian F. Akyildiz,et al.  Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks , 2013, IEEE Journal on Selected Areas in Communications.

[80]  Andrea Alù,et al.  Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces. , 2015, Physical review letters.

[81]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[82]  Juan Sebastian Gomez-Diaz,et al.  Sinusoidally Modulated Graphene Leaky-Wave Antenna for Electronic Beamscanning at THz , 2013, IEEE Transactions on Terahertz Science and Technology.

[83]  Yuanmu Yang,et al.  All-dielectric metasurface analogue of electromagnetically induced transparency , 2014, Nature Communications.

[84]  Frank H. L. Koppens,et al.  Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.

[85]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[86]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[87]  Observation of Dyakonov Surface Waves , 2009 .

[88]  Zhuomin M. Zhang,et al.  Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons , 2015 .

[89]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[90]  Gang Chen,et al.  Nanoscale design to enable the revolution in renewable energy , 2009, Energy & Environmental Science.

[91]  Vilson R. Almeida,et al.  Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. , 2013, Nature materials.

[92]  Andrea Alù,et al.  Graded metascreens to enable a new degree of nanoscale light management , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.