An elementary theory for the Taylor impact test

[1]  Joseph C. Foster,et al.  An engineering analysis of plastic wave propagation in the Taylor test , 1997 .

[2]  Joseph C. Foster,et al.  A One-Dimensional, Two-Phase Flow Model for Taylor Impact Specimens , 1991 .

[3]  Stanley E. Jones,et al.  A continuum mechanics code analysis of steady plastic wave propagation in the Taylor test , 1997 .

[4]  A. C. Whiffin The use of flat-ended projectiles for determining dynamic yield stress - II. Tests on various metallic materials , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Lawrence E Murr,et al.  Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, with K. P. Staudhammer and M. A. Meyers , Marcel Dekker, Inc., New York, , 1986 .

[7]  S. E. Jones,et al.  An elementary scaling law for rod impact specimens , 1986 .

[8]  T. Ting,et al.  Impact of a Nonlinear Viscoplastic Rod on a Rigid Wall , 1966 .

[9]  J. B. Hawkyard,et al.  A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations , 1969 .

[10]  B. J. Baxter,et al.  An experimental and analytical study of the Taylor impact test , 1994 .

[11]  Stanley E. Jones,et al.  Constitutive modeling using the Taylor impact test , 1995 .

[12]  Joel W. House,et al.  Taylor Impact Testing , 1989 .

[13]  J. Hawkyard,et al.  The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the “mushrooming” of flat-ended projectiles , 1968 .