Evidence of indirect gap in monolayer WSe2

[1]  E. Malic,et al.  Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides , 2017, 1706.00491.

[2]  A. Knorr,et al.  Proposal for dark exciton based chemical sensors , 2017, Nature Communications.

[3]  A. Knorr,et al.  Dark and bright exciton formation, thermalization, and photoluminescence in monolayer transition metal dichalcogenides , 2017, 1703.03317.

[4]  Kai Yan,et al.  Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit. , 2016, Nano letters.

[5]  J. Kong,et al.  High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. , 2016, ACS nano.

[6]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[7]  M. Raschke,et al.  Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. , 2016, Nano letters.

[8]  T. Heinz,et al.  Experimental Evidence for Dark Excitons in Monolayer WSe_{2}. , 2015, Physical review letters.

[9]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[10]  C. A. Nelson,et al.  Correction to "charge transfer excitons at van der Waals interfaces". , 2015, Journal of the American Chemical Society.

[11]  Chendong Zhang,et al.  Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. , 2014, Nano letters.

[12]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[13]  Madan Dubey,et al.  Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition , 2014, Nature Communications.

[14]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[15]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[16]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[17]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[18]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[19]  P. Ajayan,et al.  Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors , 2014 .

[20]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[21]  Chendong Zhang,et al.  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[22]  A. M. van der Zande,et al.  Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. , 2013, Physical review letters.

[23]  H. Dery,et al.  Strain effects on the spin-orbit-induced band structure splittings in monolayer MoS2and graphene , 2013, 1308.2733.

[24]  X. Marie,et al.  Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 , 2013, 1306.3442.

[25]  Li Yang,et al.  Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides , 2013, 1306.0620.

[26]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[27]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[28]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[29]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[30]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[31]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[32]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[33]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .

[34]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[35]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[41]  B. Pazol,et al.  Index of refraction measurement on sapphire at low temperatures and visible wavelengths. , 1993, Applied optics.

[42]  L. Keldysh Coulomb interaction in thin semiconductor and semimetal films , 1979 .

[43]  L. Brixner Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten☆ , 1962 .