The Theory of the Quantum World

[1]  S. Tung,et al.  Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices , 2012, Science.

[2]  Harvendra Singh Lifshitz/Schrödinger Dp-branes and dynamical exponents , 2012, 1202.6533.

[3]  Bom Soo Kim Schrödinger holography with and without hyperscaling violation , 2012, 1202.6062.

[4]  K. Narayan Lifshitz scaling and hyperscaling violation in string theory , 2012, 1202.5935.

[5]  M. Punk,et al.  Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Edgar Shaghoulian Holographic entanglement entropy and Fermi surfaces , 2011, 1112.2702.

[7]  S. Hartnoll,et al.  Fractionalization of holographic Fermi surfaces , 2011, 1111.2606.

[8]  A. Vishwanath,et al.  Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions , 2011, 1108.4038.

[9]  Yi Zhang,et al.  Topological entanglement entropy of Z 2 spin liquids and lattice Laughlin states , 2011, 1106.0015.

[10]  S. Sachdev,et al.  Fermi surfaces and gauge-gravity duality , 2011, 1104.5022.

[11]  B. Swingle Entanglement entropy and the Fermi surface. , 2009, Physical review letters.

[12]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[13]  E. Fradkin,et al.  Nonperturbative behavior of the quantum phase transition to a nematic Fermi fluid , 2005, cond-mat/0508747.

[14]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[15]  O. Motrunich Variational study of triangular lattice spin-1/2 model with ring exchanges and spin liquid state in kappa-(ET)2Cu2(CN)3 , 2004, cond-mat/0412556.

[16]  M. Freedman,et al.  A class of P,T-invariant topological phases of interacting electrons , 2003, cond-mat/0307511.

[17]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[18]  G. Misguich,et al.  Quantum dimer model on the kagome lattice: solvable dimer-liquid and ising gauge theory. , 2002, Physical review letters.

[19]  S. Girvin,et al.  Fractionalization in an easy-axis Kagome antiferromagnet , 2001, cond-mat/0110005.

[20]  N. Read,et al.  Large N Expansion for Frustrated and Doped Quantum Antiferromagnets , 2004, cond-mat/0402109.

[21]  R. Jalabert,et al.  Spontaneous alignment of frustrated bonds in an anisotropic, three-dimensional Ising model. , 1991, Physical review. B, Condensed matter.

[22]  Read,et al.  Large-N expansion for frustrated quantum antiferromagnets. , 1991, Physical review letters.

[23]  M. Thouless Fluxoid quantization in the resonating-valence-bond model. , 1987, Physical review. B, Condensed matter.

[24]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .