Construction Algorithms for Good Extensible Lattice Rules

Extensible (polynomial) lattice rules have the property that the number N of points in the node set may be increased while retaining the existing points. It was shown by Hickernell and Niederreiter in a nonconstructive manner that there exist generating vectors for extensible integration lattices of excellent quality for N=b,b2,b3,…, where b is a given integer greater than 1. Similar results were proved by Niederreiter for polynomial lattices. In this paper we provide construction algorithms for good extensible lattice rules. We treat the classical as well as the polynomial case.

[1]  Harald Niederreiter,et al.  The Existence of Good Extensible Polynomial Lattice Rules , 2003 .

[2]  E. D. Giorgi Selected Papers , 2006 .

[3]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[4]  Josef Dick,et al.  Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..

[5]  I. H. SLOAN,et al.  Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..

[6]  H. E. Chrestenson A class of generalized Walsh functions , 1955 .

[7]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[8]  H. Niederreiter Existence of good lattice points in the sense of Hlawka , 1978 .

[9]  Edward B. Saff,et al.  Joseph L. Walsh , 2000 .

[10]  Peter Kritzer,et al.  Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.

[11]  Josef Dick On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..

[12]  J HickernellF,et al.  Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .

[13]  E. Hlawka Zur angenäherten Berechnung mehrfacher Integrale , 1962 .

[14]  Harald Niederreiter,et al.  Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .

[15]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[16]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[17]  Henryk Wozniakowski,et al.  Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..

[18]  Frances Y. Kuo,et al.  Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..

[19]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[20]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[21]  Frances Y. Kuo,et al.  Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..

[22]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[23]  T. J. Rivlin,et al.  Joseph L. Walsh : selected papers , 2000 .

[24]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[25]  Christiane Lemieux,et al.  Searching for extensible Korobov rules , 2007, J. Complex..

[26]  Fred J. Hickernell My dream quadrature rule , 2003, J. Complex..

[27]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[28]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[29]  Josef Dick,et al.  The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..

[30]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[31]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[32]  Josef Dick,et al.  The construction of good extensible rank-1 lattices , 2008, Math. Comput..

[33]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[34]  Josef Dick,et al.  Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..

[35]  Frances Y. Kuo,et al.  Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..