Construction Algorithms for Good Extensible Lattice Rules
暂无分享,去创建一个
[1] Harald Niederreiter,et al. The Existence of Good Extensible Polynomial Lattice Rules , 2003 .
[2] E. D. Giorgi. Selected Papers , 2006 .
[3] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[4] Josef Dick,et al. Construction Algorithms for Digital Nets with Low Weighted Star Discrepancy , 2005, SIAM J. Numer. Anal..
[5] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[6] H. E. Chrestenson. A class of generalized Walsh functions , 1955 .
[7] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[8] H. Niederreiter. Existence of good lattice points in the sense of Hlawka , 1978 .
[9] Edward B. Saff,et al. Joseph L. Walsh , 2000 .
[10] Peter Kritzer,et al. Constructions of general polynomial lattices for multivariate integration , 2007, Bulletin of the Australian Mathematical Society.
[11] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[12] J HickernellF,et al. Computing Multivariate Normal Probabilities Using Rank-1 Lattice Sequences , 1997 .
[13] E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale , 1962 .
[14] Harald Niederreiter,et al. Low-discrepancy point sets obtained by digital constructions over finite fields , 1992 .
[15] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[16] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[17] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[18] Frances Y. Kuo,et al. Construction algorithms for polynomial lattice rules for multivariate integration , 2005, Math. Comput..
[19] J. Walsh. A Closed Set of Normal Orthogonal Functions , 1923 .
[20] P. Hellekalek,et al. Random and Quasi-Random Point Sets , 1998 .
[21] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[22] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[23] T. J. Rivlin,et al. Joseph L. Walsh : selected papers , 2000 .
[24] Michael T. Heath,et al. Scientific Computing , 2018 .
[25] Christiane Lemieux,et al. Searching for extensible Korobov rules , 2007, J. Complex..
[26] Fred J. Hickernell. My dream quadrature rule , 2003, J. Complex..
[27] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[28] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[29] Josef Dick,et al. The construction of extensible polynomial lattice rules with small weighted star discrepancy , 2007, Math. Comput..
[30] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[31] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[32] Josef Dick,et al. The construction of good extensible rank-1 lattices , 2008, Math. Comput..
[33] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[34] Josef Dick,et al. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces , 2005, J. Complex..
[35] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..