Correlation Between Thermal Parameters and Morphology of Cross-Linked Polyethylene

This paper reveals a correlation between morphology and thermal parameters on cross-linked polyethylene (XLPE) cable with different insulating states. Several cables were selected to detect the physicochemical and thermal parameters of the XLPE. The results show that the cable ampacity is determined by the thermal parameters, which are deeply subjected to the morphology of the XLPE. The molecular chain and crystal structure of the XLPE have a close connection with the thermal resistivity. The physicochemical parameters of carbonyl index (<italic>CI</italic>) and unsaturated band index (<italic>UBI</italic>) from Fourier transform infrared spectrum (FTIR) and melting range (<inline-formula> <tex-math notation="LaTeX">$R_{m}$ </tex-math></inline-formula>) from differential scanning calorimetry (DSC) can be the indicator to evaluate the diversity of the thermal resistivity. The change of thermal capacity is governed by the crystal distribution of the XLPE. The physicochemical parameters of crystallinity (<inline-formula> <tex-math notation="LaTeX">$\chi$ </tex-math></inline-formula>) and lamellar thickness (<inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>) from DSC can be the indicator to evaluate the change of the thermal capacity. In addition, FWHM of the crystallization peak <inline-formula> <tex-math notation="LaTeX">$\Delta W$ </tex-math></inline-formula>, crystalline rate index (<inline-formula> <tex-math notation="LaTeX">$T_{0}$ </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">$T_{\mathrm {P}}$ </tex-math></inline-formula>) and cross-linking degree (<inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>) can also be the indicator of the thermal parameters. Finally, this paper proposes a more accurate on-line monitoring method for electric power industry by detecting thermal parameters to diagnose the operating cables in the practical application.

[1]  Wenwei Zhu,et al.  Thermal Effect of Different Laying Modes on Cross-Linked Polyethylene (XLPE) Insulation and a New Estimation on Cable Ampacity , 2019, Energies.

[2]  Raphael Comte,et al.  Degradation of XLPE and PVC cable insulators , 2015, 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP).

[3]  A. Gupta,et al.  Crystallization of PP in PP/SEBS blends and its correlation with tensile properties , 1984 .

[4]  A. V. Kostanovskiy,et al.  About a phonon mechanism of heat conduction in graphite at high temperatures , 2013 .

[5]  Larbi Boukezzi,et al.  Observations on Structural Changes under Thermal Ageing of Cross-linked Polyethylene Used As Power Cables Insulation , 2008 .

[6]  R. Bruce Prime,et al.  Thermal analysis of polymers : fundamentals and applications , 2009 .

[7]  Jiasheng Huang,et al.  Rejuvenation of Retired Power Cables by Heat Treatment: Experimental Simulation in Lab , 2020, IEEE Access.

[8]  Yoshimichi Ohki,et al.  Rejuvenation of retired power cables by heat treatment , 2019, IEEE Transactions on Dielectrics and Electrical Insulation.

[9]  Jianying Li,et al.  The role of thermo-oxidative aging at different temperatures on the crystal structure of crosslinked polyethylene , 2018, Journal of Materials Science: Materials in Electronics.

[10]  Taofang Zeng,et al.  Phonon heat conduction in thin films : Impacts of thermal boundary resistance and internal heat generation , 2001 .

[11]  N. Rajakovic,et al.  Influence of accelerated aging on mechanical and structural properties of cross-linked polyethylene (XLPE) insulation , 2001 .

[12]  H. M. Lee,et al.  Thermal aging estimation with load cycle and thermal transients for XLPE-insulated underground cable , 2017, 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP).

[13]  A. Boubakeur,et al.  Effect of artificial thermal aging on the crystallinity of XLPE insulation cables: X-ray study , 2007, 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena.

[14]  Jiasheng Huang,et al.  Investigation on Cable Rejuvenation by Simulating Cable Operation , 2020, IEEE Access.

[15]  Liu Yigang Experimental Research of Dynamic Capacity Based on Conductor Temperature-rise Characteristic of HV Single-core Cable , 2012 .

[16]  Gang Liu,et al.  Investigation of the Ampacity of a Prefabricated Straight-Through Joint of High Voltage Cable , 2017 .

[17]  Chongqing Kang,et al.  Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China , 2019 .

[18]  S. Grzybowski,et al.  Changes of Thermoplastic PE Cable Insulation Properties Caused by the Overload Current , 1989, IEEE Power Engineering Review.

[19]  Radek Polansky,et al.  A comparative study of dielectric, mechanical and structural properties of fire-protective insulation based on XLPE , 2013, 2013 IEEE International Conference on Solid Dielectrics (ICSD).