Stereo Matching in the Presence of Narrow Occluding Objects Using Dynamic Disparity Search

Most contemporary stereo correspondence algorithms impose global consistency among candidate match-points using spatial hierarchy mechanism (SHM) based techniques that rely on either the local support within a 2D neighborhood in the image plane and/or cooperative processes between multiple levels of a pixel-resolution or structural-description hierarchy. We analyze the stereo matching failures in SHM-based techniques in the presence of narrow occluding objects and propose the dynamic disparity search (DDS) framework to reduce false-positive matches. Experiments with indoor and outdoor scenes demonstrate a significant reduction in the false-positive match rates of a DDS-based stereo algorithm as compared to those of two existing algorithms. >

[1]  Umesh Ramesh Dhond Stereo image interpretation in the presence of narrow occluding objects , 1992 .

[2]  A. Waxman,et al.  Using disparity functional for stereo correspondence and surface reconstruction , 1987 .

[3]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[4]  Jake K. Aggarwal,et al.  Positioning three-dimensional objects using stereo images , 1987, IEEE J. Robotics Autom..

[5]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[7]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[8]  R. Nevatia,et al.  Use of monocular groupings and occlusion analysis in a hierarchical stereo system , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  John E. W. Mayhew,et al.  Psychophysical and Computational Studies Towards a Theory of Human Stereopsis , 1981, Artif. Intell..

[10]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jake K. Aggarwal,et al.  Determining object motion in a sequence of stereo images , 1987, IEEE Journal on Robotics and Automation.

[13]  James J. Little,et al.  Direct evidence for occlusion in stereo and motion , 1990, Image Vis. Comput..

[14]  W E Grimson,et al.  A computer implementation of a theory of human stereo vision. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[16]  Liang-Hua Chen,et al.  Analysis of two new stereo algorithms , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..