Partially asynchronous, parallel algorithms for network flow and other problems

The problem of computing a fixed point of a nonexpansive function f is considered. Sufficient conditions are provided under which a parallel, partially asynchronous implementation of the iteration $x: = f(x)$ converges. These results are then applied to (i) quadratic programming subject to box constraints, (ii) strictly convex cost network flow optimization, (iii) an agreement and a Markov chain problem, (iv) neural network optimization, and (v) finding the least element of a polyhedral set determined by a weakly diagonally dominant, Leontief system. Finally, simulation results illustrating the attainable speedup and the effects of asynchronism are presented.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  F. Browder Nonlinear functional analysis , 1970 .

[3]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[4]  Arthur F. Veinott,et al.  Polyhedral sets having a least element , 1972, Math. Program..

[5]  K. R. James Convergence of Matrix Iterations Subject to Diagonal Dominance , 1973 .

[6]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[7]  Henry Gabbay A note on polyhedral sets having A least element , 1976, Math. Program..

[8]  Gérard M. Baudet,et al.  Asynchronous Iterative Methods for Multiprocessors , 1978, JACM.

[9]  R. Dembo,et al.  A scaled reduced gradient algorithm for network flow problems with convex separable costs , 1981 .

[10]  Dimitri P. Bertsekas,et al.  Distributed asynchronous computation of fixed points , 1983, Math. Program..

[11]  Azuma Ohuchi,et al.  Lagrangian dual coordinatewise maximization algorithm for network transportation problems with quadratic costs , 1984, Networks.

[12]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[13]  John N. Tsitsiklis,et al.  Problems in decentralized decision making and computation , 1984 .

[14]  John N. Tsitsiklis,et al.  Distributed Asynchronous Deterministic and Stochastic Gradient Optimization Algorithms , 1984, 1984 American Control Conference.

[15]  F. R. Gantmakher The Theory of Matrices , 1984 .

[16]  A. Barrett Network Flows and Monotropic Optimization. , 1984 .

[17]  J. Hopfield,et al.  Computing with neural circuits: a model. , 1986, Science.

[18]  John N. Tsitsiklis,et al.  On the stability of asynchronous iterative processes , 1986, 1986 25th IEEE Conference on Decision and Control.

[19]  S. Zenios,et al.  Relaxation techniques for strictly convex network problems , 1986 .

[20]  Debasis Mitra,et al.  A chaotic asynchronous algorithm for computing the fixed point of a nonnegative matrix of unit spectral radius , 1986, JACM.

[21]  R. Cottle,et al.  A Lagrangean relaxation algorithm for the constrained matrix problem , 1986 .

[22]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[23]  D. Bertsekas,et al.  Distributed asynchronous relaxation methods for convex network flow problems , 1987 .

[24]  D. Bertsekas,et al.  Relaxation methods for network flow problems with convex arc costs , 1987 .

[25]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[26]  Stavros A. Zenios,et al.  Nonlinear network optimization on a massively parallel connection machine , 1988 .

[27]  John M. Mulvey,et al.  A distributed algorithm for convex network optimization problems , 1988, Parallel Comput..

[28]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[29]  Paul Tseng,et al.  Distributed Computation for Linear Programming Problems Satisfying a Certain Diagonal Dominance Condition , 1990, Math. Oper. Res..

[30]  J. Walrand,et al.  Distributed Dynamic Programming , 2022 .