Imaging of Tumor Angiogenesis for Radiologists--Part 1: Biological and Technical Basis.

Angiogenesis is a key cancer hallmark involved in tumor growth and metastasis development. Tumor angiogenesis is the process whereby new blood vessels are formed to supply nutrients and oxygen to support the growth of tumors. This article reviews the biological basis behind imaging features and the different imaging modalities used to assess the status of tumor neovasculature in vivo at different scales: structural, functional, and molecular.

[1]  H. Lee,et al.  Tumor perfusion‐related parameter of diffusion‐weighted magnetic resonance imaging: Correlation with histological microvessel density , 2014, Magnetic resonance in medicine.

[2]  R. Knuechel,et al.  Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. , 2014, The American journal of pathology.

[3]  D. Artemov,et al.  Heterogeneity of Tumor Vasculature and Antiangiogenic Intervention: Insights from MR Angiography and DCE-MRI , 2014, PloS one.

[4]  Zhiwei Wang,et al.  Tumour vasculogenic mimicry is associated with poor prognosis of human cancer patients: a systemic review and meta-analysis. , 2013, European journal of cancer.

[5]  D Balvay,et al.  Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. , 2013, Diagnostic and interventional imaging.

[6]  Jürgen K Willmann,et al.  Acoustic and Photoacoustic Molecular Imaging of Cancer , 2013, The Journal of Nuclear Medicine.

[7]  F. Kiessling Science to practice: will contrast agents for molecular imaging of angiogenesis help overcome the limitations of functional vascular imaging? , 2013, Radiology.

[8]  Joseph A Maldjian,et al.  Clinical applications of arterial spin labeling , 2013, NMR in biomedicine.

[9]  Fernando Calamante,et al.  The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI , 2013, NMR in biomedicine.

[10]  Andrei Iagaru,et al.  Imaging tumor angiogenesis: the road to clinical utility. , 2013, AJR. American journal of roentgenology.

[11]  V. Yaghmai,et al.  A radiologist's guide to treatment response criteria in oncologic imaging: functional, molecular, and disease-specific imaging biomarkers. , 2013, AJR. American journal of roentgenology.

[12]  P. Apfaltrer,et al.  CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. , 2013, European journal of radiology.

[13]  Michael Ingrisch,et al.  Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer , 2013, Journal of Pharmacokinetics and Pharmacodynamics.

[14]  H. Alkadhi,et al.  Computed Tomography Perfusion Imaging of Renal Cell Carcinoma: Systematic Comparison With Histopathological Angiogenic and Prognostic Markers , 2013, Investigative radiology.

[15]  Fabian Kiessling,et al.  Non-invasive imaging for studying anti-angiogenic therapy effects , 2013, Thrombosis and Haemostasis.

[16]  Bruce R. Rosen,et al.  Vessel Architectural Imaging Identifies Cancer Patient Responders to Anti-angiogenic Therapy , 2013, Nature Medicine.

[17]  V. Goh,et al.  CT perfusion in oncologic imaging: a useful tool? , 2013, AJR. American journal of roentgenology.

[18]  Max Wintermark,et al.  Perfusion MRI: the five most frequently asked clinical questions. , 2013, AJR. American journal of roentgenology.

[19]  Vicky Goh,et al.  Operable non-small cell lung cancer: correlation of volumetric helical dynamic contrast-enhanced CT parameters with immunohistochemical markers of tumor hypoxia. , 2012, Radiology.

[20]  C. Dietrich,et al.  An EFSUMB Introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for Quantification of Tumour Perfusion , 2012, Ultraschall in der Medizin.

[21]  H. Dvorak,et al.  Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets , 2012, Clinical & Experimental Metastasis.

[22]  M. Backer,et al.  Imaging Key Biomarkers of Tumor Angiogenesis , 2012, Theranostics.

[23]  Paul Kinahan,et al.  Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials , 2012, European Radiology.

[24]  Lihong V. Wang,et al.  Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs , 2012, Science.

[25]  Rongfu Wang,et al.  A concise review of current radiopharmaceuticals in tumor angiogenesis imaging. , 2012, Current pharmaceutical design.

[26]  Y. Kono,et al.  Dynamic contrast enhanced ultrasound assessment of the vascular effects of novel therapeutics in early stage trials , 2012, European Radiology.

[27]  J P B O'Connor,et al.  Dynamic contrast-enhanced imaging techniques: CT and MRI. , 2011, The British journal of radiology.

[28]  H. Dvorak,et al.  Tumor-surrogate blood vessel subtypes exhibit differential susceptibility to anti-VEGF therapy. , 2011, Cancer research.

[29]  D. Cheresh,et al.  Tumor angiogenesis: molecular pathways and therapeutic targets , 2011, Nature Medicine.

[30]  R. Jain,et al.  Perfusion CT Imaging of Brain Tumors: An Overview , 2011, American Journal of Neuroradiology.

[31]  D. Collins,et al.  Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. , 2011, AJR. American journal of roentgenology.

[32]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[33]  M. Mazzone,et al.  Growing tumor vessels: more than one way to skin a cat - implications for angiogenesis targeted cancer therapies. , 2011, Molecular aspects of medicine.

[34]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[35]  F. Kiessling Science to practice: the dawn of molecular US imaging for clinical cancer imaging. , 2010, Radiology.

[36]  Thorsten Persigehl,et al.  Optical techniques for the molecular imaging of angiogenesis , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[37]  O. Boerman,et al.  Molecular imaging of angiogenesis with SPECT , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  Roland Haubner,et al.  Positron emission tomography tracers for imaging angiogenesis , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[39]  Daniel Razansky,et al.  Anatomical and microstructural imaging of angiogenesis , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[40]  Ira M. Herman,et al.  Tumor Angiogenesis: Insights and Innovations , 2010, Journal of oncology.

[41]  H. Vogel,et al.  Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. , 2010, The Journal of clinical investigation.

[42]  Gerhard Christofori,et al.  The angiogenic switch in carcinogenesis. , 2009, Seminars in cancer biology.

[43]  Michael J Paldino,et al.  Fundamentals of quantitative dynamic contrast-enhanced MR imaging. , 2009, Magnetic resonance imaging clinics of North America.

[44]  Joseph A Maldjian,et al.  Arterial spin-labeled MR perfusion imaging: clinical applications. , 2009, Magnetic resonance imaging clinics of North America.

[45]  R. Raychowdhury,et al.  Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. , 2009, Cancer research.

[46]  Caterina Guiot,et al.  Fractal parameters and vascular networks: facts & artifacts , 2008, Theoretical Biology and Medical Modelling.

[47]  Weibo Cai,et al.  Multimodality Molecular Imaging of Tumor Angiogenesis , 2008, Journal of Nuclear Medicine.

[48]  Dai Fukumura,et al.  Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. , 2007, Microvascular research.

[49]  Tristan Barrett,et al.  Macromolecular MRI contrast agents for imaging tumor angiogenesis. , 2006, European journal of radiology.

[50]  I. Jonassen,et al.  Angiogenesis-independent tumor growth mediated by stem-like cancer cells , 2006, Proceedings of the National Academy of Sciences.

[51]  M. Knopp,et al.  The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations , 2005, British Journal of Cancer.

[52]  R. Strecker,et al.  Vessel size imaging in humans , 2005, Magnetic resonance in medicine.

[53]  Shayn M Peirce,et al.  Microvascular Remodeling: A Complex Continuum Spanning Angiogenesis to Arteriogenesis , 2003, Microcirculation.

[54]  Masahiko Kusumoto,et al.  Contrast‐enhanced dynamic computed tomography for the evaluation of tumor angiogenesis in patients with lung carcinoma , 2002, Cancer.

[55]  K W Ferrara,et al.  Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents. , 2000, Academic radiology.

[56]  J W Baish,et al.  Fractals and cancer. , 2000, Cancer research.

[57]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[58]  G. Yancopoulos,et al.  Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. , 1999, Science.

[59]  J. Folkman What is the evidence that tumors are angiogenesis dependent? , 1990, Journal of the National Cancer Institute.

[60]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[61]  S. Caruthers,et al.  Molecular Mr imaging of neovascular Progression in the Vx2 Tumor with a v b 3 -Targeted Paramagnetic nanoparticles 1 , 2013 .

[62]  A. Pathak,et al.  MR molecular imaging of tumor vasculature and vascular targets. , 2010, Advances in genetics.

[63]  Xiaoyuan Chen,et al.  PET Imaging of Angiogenesis. , 2009, PET clinics.

[64]  J. Jakobsen Ultrasound contrast agents: clinical applications , 2001, European Radiology.

[65]  Michel Claudon,et al.  Ultrasound contrast agents: properties, principles of action, tolerance, and artifacts , 2001, European Radiology.