On the covering radius of Z4-codes and their lattices
暂无分享,去创建一个
[1] P. Gaborit,et al. Type II codes over F/sub 4/ , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[2] N. J. A. Sloane,et al. Orbit and coset analysis of the Golay and related codes , 1990, IEEE Trans. Inf. Theory.
[3] A. Robert Calderbank,et al. Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.
[4] Vera Pless,et al. Cyclic codes and quadratic residue codes over Z4 , 1996, IEEE Trans. Inf. Theory.
[5] Philippe Delsarte,et al. Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..
[6] N. Sloane,et al. Double Circulant Codes over $$\mathbb{Z}_4 $$ and Even Unimodular Lattices , 1997 .
[7] R. Borcherds. The Leech lattice , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[8] Eric M. Rains. Optimal self-dual codes over Z4 , 1999, Discret. Math..
[9] Masaaki Harada,et al. Niemeier lattices and Type II codes over Z4 , 1999, Discret. Math..
[10] N. J. A. Sloane,et al. Modular andp-adic cyclic codes , 1995, Des. Codes Cryptogr..
[11] Patrick Solé,et al. Quaternary constructions of formally self-dual binary codes and unimodular lattices , 1993, Algebraic Coding.
[12] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.