Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition

Metal oxide nanosheets have potential applications in novel nanoelectronics as nanocrystal building blocks. In this work, the devices with a structure of Au/p-type Co3O4 nanosheets/indium tin oxide/glass having bipolar resistive switching characteristics were successfully fabricated. The experimental results demonstrate that the device have stable high/low resistance ratio that is greater than 25, endurance performance more than 200 cycles, and data retention more than 10,000 s. Such a superior performance of the as-fabricated device could be explained by the bulk film and Co3O4/indium tin oxide glass substrate interface effect.

[1]  Y. Tokura,et al.  Giant magnetoresistance of manganese oxides with a layered perovskite structure , 1996, Nature.

[2]  Sean Li,et al.  Oxygen level: the dominant of resistive switching characteristics in cerium oxide thin films , 2012 .

[3]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[4]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[5]  Qihua Wang,et al.  Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. , 2011, Inorganic chemistry.

[6]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[7]  Young-soo Park,et al.  Low‐Temperature‐Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High‐Density Non‐volatile Memory , 2009 .

[8]  D. Xing,et al.  Synthesis of morphology-controlled silver nanostructures by electrodeposition , 2010 .

[9]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[10]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[11]  J. S. Lee,et al.  Occurrence of both unipolar memory and threshold resistance switching in a NiO film. , 2008, Physical review letters.

[12]  Jianlin Shi,et al.  Controlled synthesis of highly active mesoporous Co3O4 polycrystals for low temperature CO oxidation , 2012 .

[13]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[14]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[15]  G. Tyuliev,et al.  The nature of excess oxygen in Co3O4+ϵ , 1988 .

[16]  Jae Hyuck Jang,et al.  Effects of heat dissipation on unipolar resistance switching in Pt∕NiO∕Pt capacitors , 2008, 0802.3739.

[17]  R. Gurney,et al.  Electronic Processes in Ionic Crystals , 1964 .

[18]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[19]  H. Fröhlich Electronic Processes in Ionic Crystals , 1949, Nature.

[20]  Bei Wang,et al.  Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. , 2010, Chemistry.

[21]  T. Barr An ESCA study of the termination of the passivation of elemental metals , 1978 .

[22]  M. Goiran,et al.  Preparation and magnetic properties of the CoO/Co bilayer , 1998 .

[23]  Shimeng Yu,et al.  A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM , 2010, IEEE Electron Device Letters.

[24]  M. G. Cook,et al.  X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper , 1975 .

[25]  Tomoji Kawai,et al.  Intrinsic mechanisms of memristive switching. , 2011, Nano letters.

[26]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[27]  M. Zheng,et al.  Preparation of Mesoporous Co3O4 Nanoparticles via Solid−Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors , 2009 .

[28]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[29]  Herbert Schroeder,et al.  Comment on “Exponential ionic drift: fast switching and low volatility of thin-film memristors” by D.B. Strukov and R.S. Williams in Appl. Phys. A (2009) 94: 515–519 , 2011 .

[30]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[31]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[32]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[33]  P. Leighton Electronic Processes in Ionic Crystals (Mott, N. F.; Gurney, R. W.) , 1941 .