Hierarchical Riesz Bases for Hs(Ω), 1 < s < 5/2

AbstractOn arbitrary polygonal domains $\Omega \subset \RR^2$, we construct $C^1$ hierarchical Riesz bases for Sobolev spaces $H^s(\Omega)$. In contrast to an earlier construction by Dahmen, Oswald, and Shi (1994), our bases will be of Lagrange instead of Hermite type, by which we extend the range of stability from $s \in (2,\frac{5}{2})$ to $s \in (1,\frac{5}{2})$. Since the latter range includes $s=2$, with respect to the present basis, the stiffness matrices of fourth-order elliptic problems are uniformly well-conditioned.

[1]  Wolfgang Dahmen,et al.  C 1 -hierarchical bases , 1994 .

[2]  P. Oswald,et al.  Hierarchical conforming finite element methods for the biharmonic equation , 1992 .

[3]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[4]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[5]  Frank Zeilfelder,et al.  Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations , 2004, Adv. Comput. Math..

[6]  Frank Zeilfelder,et al.  Lagrange Interpolation by C1 Cubic Splines on Triangulations of Separable Quadrangulations , 2002 .

[7]  Frank Zeilfelder,et al.  Local Lagrange interpolation by bivariate C 1 cubic splines , 2001 .

[8]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[9]  Frank Zeilfelder,et al.  Bivariate spline interpolation with optimal approximation order , 2001 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[12]  Larry L. Schumaker,et al.  Surface Compression Using a Space of C1 Cubic Splines with a Hierarchical Basis , 2003, Computing.

[13]  Frank Zeilfelder,et al.  Scattered Data Fitting by Direct Extension of Local Polynomials to Bivariate Splines , 2004, Adv. Comput. Math..

[14]  Larry L. Schumaker,et al.  On the Approximation Power of Splines on Triangulated Quadrangulations , 1998 .

[15]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[16]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[17]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[18]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[19]  L. R. Scott,et al.  A nodal basis for ¹ piecewise polynomials of degree ≥5 , 1975 .