Fixed point theorems on partial randomness

In our former work [K. Tadaki, Local Proceedings of CiE 2008,pp. 425---434, 2008], we developed a statistical mechanicalinterpretation of algorithmic information theory by introducing thenotion of thermodynamic quantities, such as free energyF (T ), energy E (T ), andstatistical mechanical entropy S (T ), into thetheory. We then discovered that, in the interpretation, thetemperature T equals to the partial randomness of thevalues of all these thermodynamic quantities, where the notion ofpartial randomness is a stronger representation of the compressionrate by program-size complexity. Furthermore, we showed that thissituation holds for the temperature itself as a thermodynamicquantity. Namely, the computability of the value of partitionfunction Z (T ) gives a sufficient condition forT ⊆ (0,1) to be a fixed point on partial randomness.In this paper, we show that the computability of each of all thethermodynamic quantities above gives the sufficient condition also.Moreover, we show that the computability of F (T )gives completely different fixed points from the computability ofZ (T ).

[1]  Nobuhiko Saitô,et al.  Statistical Physics I : Equilibrium Statistical Mechanics , 1983 .

[2]  Kohtaro Tadaki,et al.  A Generalization of Chaitin's Halting Probability \Omega and Halting Self-Similar Sets , 2002, ArXiv.

[3]  Cristian S. Calude,et al.  Natural halting probabilities, partial randomness, and zeta functions , 2006, Inf. Comput..

[4]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[5]  Cristian S. Calude,et al.  On partial randomness , 2006, Ann. Pure Appl. Log..

[6]  G. Chaitin Incompleteness theorems for random reals , 1987 .

[7]  Gregory. J. Chaitin,et al.  Algorithmic information theory , 1987, Cambridge tracts in theoretical computer science.

[8]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[9]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[10]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[11]  Nobuhiko Saitô,et al.  Statistical Physics , 2021, Major American Universities Ph.D. Qualifying Questions and Solutions - Physics.

[12]  F. Stephan,et al.  HIERARCHIES OF RANDOMNESS TESTS , 2006 .

[13]  Frank C. Andrews,et al.  Equilibrium Statistical Mechanics , 1963 .

[14]  R. Callen,et al.  Thermodynamics and an Introduction to Thermostatistics, 2nd Edition , 1985 .

[15]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[16]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[17]  Jan Reimann,et al.  Effectively closed sets of measures and randomness , 2008, Ann. Pure Appl. Log..

[18]  Kohtaro Tadaki,et al.  A Statistical Mechanical Interpretation of Instantaneous Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[19]  只木 孝太郎 A Generalization of Chaitin's Halting Probability Ω and Halting Self-Similar Sets , 2001 .

[20]  Kohtaro Kohtaro The Tsallis entropy and the Shannon entropy of a universal probability , 2008, 2008 IEEE International Symposium on Information Theory.