Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle

This paper proposes an adaptive neural network control with neural state’s observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer. Graphical Abstract

[1]  S. Faiz Ahmed,et al.  Position Controller Design for Quad-rotor under Perturbed Condition , 2013 .

[2]  Hakim Bouadi,et al.  Adaptive sliding mode control for quadrotor attitude stabilization and altitude tracking , 2011, 2011 IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI).

[3]  Atsushi Konno,et al.  Design and Attitude Control of a Quad-Rotor Tail-Sitter Vertical Takeoff and Landing Unmanned Aerial Vehicle , 2012, Adv. Robotics.

[4]  Philippe Martin,et al.  The true role of accelerometer feedback in quadrotor control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[5]  Alejandro F. Villaverde,et al.  Adaptive Tracking Control for a Quad-Rotor , 2011 .

[6]  Leonid Fridman,et al.  High‐order sliding‐mode observer for a quadrotor UAV , 2008 .

[7]  Erdinç Altuğ,et al.  Design and implementation of a hybrid fuzzy logic controller for a quadrotor VTOL vehicle , 2012 .

[8]  Su-Lim Tan,et al.  Sensor data fusion for attitude stabilization in a low cost Quadrotor system , 2011, 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE).

[9]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[10]  Shuuji Kajita,et al.  Estimation and Control of the Attitude of a Dynamic Mobile Robot Using Internal Sensors , 1990 .

[11]  Jangmyung Lee,et al.  A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM , 2011, IEEE Transactions on Industrial Electronics.

[12]  Christopher Edwards,et al.  Nonlinear robust fault reconstruction and estimation using a sliding mode observer , 2007, Autom..

[13]  M.O. Efe,et al.  Robust low altitude behavior control of a quadrotor rotorcraft through sliding modes , 2007, 2007 Mediterranean Conference on Control & Automation.

[14]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[15]  José de Jesús Rubio,et al.  An observer with controller to detect and reject disturbances , 2014, Int. J. Control.

[16]  Yangquan Chen,et al.  A comparative evaluation of low-cost IMUs for unmanned autonomous systems , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.

[17]  S. Jagannathan,et al.  Neural network control of quadrotor UAV formations , 2009, 2009 American Control Conference.

[18]  Mehrdad Saif,et al.  Robust fault detection in uncertain nonlinear systems via a second order sliding mode observer , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[19]  Matthew W. Dunnigan,et al.  Comparative study of a sliding-mode observer and Kalman filters for full state estimation in an induction machine , 2002 .

[20]  Keiji Nagatani,et al.  Sensor Information Processing in Robot Competitions and Real World Robotic Challenges , 2012, Adv. Robotics.

[21]  Roland Siegwart,et al.  PID vs LQ control techniques applied to an indoor micro quadrotor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[22]  R. Ben Abdennour,et al.  Dynamic high gain observer design , 2009, 2009 6th International Multi-Conference on Systems, Signals and Devices.

[23]  Xilun Ding,et al.  Motion Planning and Stabilization Control of a Multipropeller Multifunction Aerial Robot , 2013, IEEE/ASME Transactions on Mechatronics.

[24]  Kevin M. Passino,et al.  Stable Adaptive Control and Estimation for Nonlinear Systems , 2001 .

[25]  Kalyana Chakravarthy Veluvolu,et al.  Sliding mode high-gain observers for a class of uncertain nonlinear systems , 2011, Appl. Math. Lett..

[26]  Gamini Dissanayake,et al.  A Virtual Odometer for a Quadrotor Micro Aerial Vehicle , 2011 .

[27]  Mae L. Seto,et al.  Control and Navigation Framework for Quadrotor Helicopters , 2013, J. Intell. Robotic Syst..

[28]  Hassan K. Khalil,et al.  High-gain observers in nonlinear feedback control , 2009, 2009 IEEE International Conference on Control and Automation.

[29]  Nacer K. M'Sirdi,et al.  Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle , 2006, Adv. Robotics.

[30]  Abdelaziz Benallegue,et al.  Backstepping control with exact 2-sliding mode estimation for a quadrotor unmanned aerial vehicle , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  S. Faiz Ahmed,et al.  Stabilized Controller Design for Attitude and Altitude Controlling of Quad-Rotor Under Disturbance and Noisy Conditions , 2013 .

[32]  Rogelio Lozano,et al.  Vision Based Tracking for a Quadrotor Using Vanishing Points , 2012, J. Intell. Robotic Syst..

[33]  Mohammad Farrokhi,et al.  Chattering free with noise reduction in sliding-mode observers using frequency domain analysis , 2010 .

[34]  M. Saif,et al.  Novel sliding mode observers for a class of uncertain systems , 2006, 2006 American Control Conference.

[35]  Boubaker Daachi,et al.  ROBUST FEEDBACK LINEARIZATION AND GH∞ CONTROLLER FOR A QUADROTOR UNMANNED AERIAL VEHICLE , 2005 .

[36]  Anthony Tzes,et al.  Model predictive quadrotor control: attitude, altitude and position experimental studies , 2012 .

[37]  Xingsheng Gu,et al.  LMI design approach to robust fuzzy sliding-mode observer in dynamical uncertain systems , 2010, 2010 8th World Congress on Intelligent Control and Automation.

[38]  Emanuel Stingu,et al.  Design and implementation of a structured flight controller for a 6DoF quadrotor using quaternions , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[39]  Frank L. Lewis,et al.  Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics , 2009, J. Intell. Robotic Syst..

[40]  Carlos Silvestre,et al.  Partial attitude and rate gyro bias estimation: observability analysis, filter design, and performance evaluation , 2011, Int. J. Control.

[41]  Rogelio Lozano,et al.  Real-time stabilization and tracking of a four-rotor mini rotorcraft , 2004, IEEE Transactions on Control Systems Technology.

[42]  Sven Lange,et al.  Incremental smoothing vs. filtering for sensor fusion on an indoor UAV , 2013, 2013 IEEE International Conference on Robotics and Automation.

[43]  Antonio Sala,et al.  Application of Takagi-Sugeno observers for state estimation in a quadrotor , 2011, IEEE Conference on Decision and Control and European Control Conference.

[44]  Martin Buss,et al.  Multi-Sensory Motion Estimation and Control of an Autonomous Quadrotor , 2011, Adv. Robotics.

[45]  Abdelaziz Benallegue,et al.  Polynomial Linear Quadratic Gaussian and Sliding Mode Observer for a Quadrotor Unmanned Aerial Vehicle , 2005, J. Robotics Mechatronics.

[46]  Daewon Lee,et al.  Build Your Own Quadrotor: Open-Source Projects on Unmanned Aerial Vehicles , 2012, IEEE Robotics & Automation Magazine.