Optimal convergence analysis of Crank-Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics

Abstract This paper considers a Crank–Nicolson extrapolation scheme based on mixed finite element method to solve the three-dimensional incompressible magnetohydrodynamics (MHD) equations. We prove that the fully discrete scheme is almost unconditionally stable and convergent, i.e., stable and convergent when the time step is less than or equal to a constant. By a new negative norm technique, the optimal error estimates in L 2 -norm are derived. Meanwhile, the numerical investigations provide a sufficient support for the theoretical analysis.

[1]  Yinnian He,et al.  The Oseen Type Finite Element Iterative Method for the Stationary Incompressible Magnetohydrodynamics , 2017 .

[2]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[3]  A. I. Nesliturk,et al.  Two‐level finite element method with a stabilizing subgrid for the incompressible MHD equations , 2009 .

[4]  M. Gunzburger,et al.  On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .

[5]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[6]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[7]  Ross Ingram,et al.  A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations , 2013, Math. Comput..

[8]  O. Ladyzhenskaya,et al.  On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations , 2004 .

[9]  Yinnian He,et al.  Two-Level Method Based on Finite Element and Crank-Nicolson Extrapolation for the Time-Dependent Navier-Stokes Equations , 2003, SIAM J. Numer. Anal..

[10]  Yunqing Huang,et al.  Local and Parallel Finite Element Algorithm Based on Oseen-Type Iteration for the Stationary Incompressible MHD Flow , 2016, Journal of Scientific Computing.

[11]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[12]  Ralf Hiptmair,et al.  A FULLY DIVERGENCE-FREE FINITE ELEMENT METHOD FOR MAGNETOHYDRODYNAMIC EQUATIONS , 2017 .

[13]  Jinchao Xu,et al.  Stable finite element methods preserving $$\nabla \cdot \varvec{B}=0$$∇·B=0 exactly for MHD models , 2017, Numerische Mathematik.

[14]  Yunqing Huang,et al.  Stability and convergence analysis of a Crank–Nicolson leap-frog scheme for the unsteady incompressible Navier–Stokes equations , 2018 .

[15]  J. Zou,et al.  A priori estimates and optimal finite element approximation of the MHD flow in smooth domains , 2018 .

[16]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[17]  William Layton,et al.  A TWO-LEVEL DISCRETIZATION METHOD FOR THE STATIONARY MHD EQUATIONS , 1997 .

[18]  Yinnian He,et al.  Two-Level Newton Iterative Method for the 2D/3D Stationary Incompressible Magnetohydrodynamics , 2015, J. Sci. Comput..

[19]  Santiago Badia,et al.  On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..

[20]  Yinnian He,et al.  Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations , 2015 .

[21]  XiaoJing Dong,et al.  Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics , 2016 .

[22]  Li Shan,et al.  A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations , 2009, Appl. Math. Comput..

[23]  Li Shan,et al.  Numerical analysis of the Crank–Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows , 2015 .

[24]  Z. F. Tian,et al.  Exponential high-order compact scheme on nonuniform grids for the steady MHD duct flow problems with high Hartmann numbers , 2015, Comput. Phys. Commun..

[25]  Ivan Cimrák,et al.  Error estimates for a semi-implicit numerical scheme solving the Landau-Lifshitz equation with an exchange field , 2005 .

[26]  Xinlong Feng,et al.  Iterative methods in penalty finite element discretization for the steady MHD equations , 2016 .

[27]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[28]  Weiwei Sun,et al.  Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations , 2007, Math. Comput..

[29]  Yinnian He,et al.  Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation , 2015, Comput. Math. Appl..

[30]  V. Georgescu,et al.  Some boundary value problems for differential forms on compact riemannian manifolds , 1979 .

[31]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[32]  Yinnian He,et al.  Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics , 2014 .

[33]  A. Prohl Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .

[34]  Lars Diening,et al.  Semi-implicit Euler Scheme for Generalized Newtonian Fluids , 2006, SIAM J. Numer. Anal..