Theoretical evaluation of diffusion coefficients of (Al2O3)n clusters in different bath gases

[1]  Boris I. Loukhovitski,et al.  Theoretical study of structure and physical properties of (Al2O3)n clusters , 2013 .

[2]  M. Capitelli,et al.  Fundamental Aspects of Plasma Chemical Physics: Transport , 2013 .

[3]  A. Sharipov,et al.  Evaluation of the reaction rate constants for the gas-phase Al-CH4–air combustion chemistry , 2012 .

[4]  Savino Longo,et al.  Fundamental Aspects of Plasma Chemical Physics , 2012 .

[5]  Matthew A. Stephens,et al.  Development of Highly Active Titania-Based Nanoparticles for Energetic Materials , 2011 .

[6]  A. Afjeh,et al.  Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol) , 2011, Nanoscale research letters.

[7]  Edward Purcell,et al.  Electricity and Magnetism: Index , 2011 .

[8]  N. Brown,et al.  Transport properties for combustion modeling , 2010 .

[9]  Phillip N. Price,et al.  Intermolecular potential parameters and combining rules determined from viscosity data , 2010 .

[10]  Matthew A. Stephens,et al.  Performance of Ammonium-Perchlorate-Based Composite Propellant Containing Nanoscale Aluminum , 2010 .

[11]  F. Ziaie,et al.  Ab initio interaction potential of methane and nitrogen , 2009 .

[12]  N. Titova,et al.  Formation of charged nanoparticles in hydrocarbon flames: principal mechanisms , 2008 .

[13]  A. Kalashnikov,et al.  The viscosity and self-diffusion of rarefied steam: Refinement of reference data , 2008 .

[14]  M. Capitelli,et al.  Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range , 2008 .

[15]  F. Pirani,et al.  Classical transport collision integrals for a Lennard-Jones like phenomenological model potential , 2007 .

[16]  Fernando Pirani,et al.  On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres , 2007 .

[17]  K. Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[18]  A. Stone,et al.  Atom–atom potentials from ab initio calculations , 2007 .

[19]  Ilya G. Kaplan,et al.  Intermolecular interactions : physical picture, computational methods, model potentials , 2006 .

[20]  A. Starik,et al.  Interaction of ions and electrons with nanoparticles in hydrocarbon combustion plasmas , 2006 .

[21]  M. W. Cole,et al.  Static Polarizabilities of Dielectric Nanoclusters , 2005, cond-mat/0508360.

[22]  S. Amoruso,et al.  The emission of atoms and nanoparticles during femtosecond laser ablation of gold , 2005 .

[23]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[24]  C. Rowley,et al.  A ‘universal’ B3LYP-based method for gas-phase molecular properties: bond dissociation enthalpy, ionization potential, electron and proton affinity and gas-phase acidity , 2005 .

[25]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[26]  Fernando Pirani,et al.  Atom–bond pairwise additive representation for intermolecular potential energy surfaces , 2004 .

[27]  Karl K. Sabelfeld,et al.  Formation of charged aggregates of Al2O3 nanoparticles by combustion of aluminum droplets in air , 2004 .

[28]  Mark T. Swihart,et al.  Vapor-phase synthesis of nanoparticles , 2003 .

[29]  L. Mädler,et al.  Flame Synthesis of Nanoparticles , 2001 .

[30]  A. Rappé,et al.  Ab Initio Calculation of Nonbonded Interactions: Are We There Yet? , 2000 .

[31]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[32]  Savino Longo,et al.  Collision Integrals of High-Temperature Air Species , 2000 .

[33]  G. Ceccone,et al.  Laser-induced particle formation and coalescence in a methane discharge , 1999 .

[34]  R. Yetter,et al.  Condensed-phase species distributions about Al particles reacting in various oxidizers , 1999 .

[35]  R. Yetter,et al.  PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2 and N2O oxidizers, and comparison with model calculations , 1998 .

[36]  J. Warnatz,et al.  A re-evaluation of the means used to calculate transport properties of reacting flows , 1998 .

[37]  T. Henning Chemistry and physics of cosmic nano- and micro-particles , 1998 .

[38]  M. Frenklach,et al.  Transport properties of polycyclic aromatic hydrocarbons for flame modeling , 1994 .

[39]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[40]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[41]  Fernando Pirani,et al.  Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations , 1991 .

[42]  J. Kestin,et al.  EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES AT LOW DENSITY : ELEVEN POLYATOMIC GASES AND FIVE NOBLE GASES , 1990 .

[43]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[44]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[45]  Tetsuo Yamamoto,et al.  Grain Formation through Nucleation Process in Astrophysical Environment , 1977 .

[46]  C. Kong Atomic distortion and the repulsive interactions of the noble gas atoms , 1973 .

[47]  R. A. Aziz,et al.  Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard‐Jones (12–6) Potential , 1972 .

[48]  R. Svehla,et al.  Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures , 1962 .

[49]  L. Salem The calculation of dispersion forces , 1960 .

[50]  A. A. Westenberg Present status of information on transport properties applicable to combustion research , 1957 .

[51]  J. Hirschfelder,et al.  THE ESTIMATION OF THE TRANSPORT PROPERTIES FOR ELECTRONICALLY EXCITED ATOMS AND MOLECULES , 1957 .

[52]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .