A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas

Rhodopsin is a visual pigment ubiquitous in multicellular animals. If visual pigments have a common ancient origin, as is believed, then some unicellular organisms might also use a rhodopsin photoreceptor1,2. We show here that the unicellular alga Chlamydomonas does indeed use a rhodopsin photoreceptor. We incorporated analogues of its retinal chromophore into a blind mutant; normal photobehaviour was restored and the colour of maximum sensitivity was shifted in a manner consistent with the nature of the retinal analogue added. The data suggest that 11-cis-retinal is the natural chromophore and that the protein environment of this retinal is similar to that found in bovine rhodopsin, suggesting homology with the rhodopsins of higher organisms. This is the first demonstration of a rhodopsin photoreceptor in an alga or eukaryotic protist and also the first report of behavioural spectral shifts caused by exogenous synthetic retinals in a eukaryote. A survey of the morphology and action spectra of other protists suggests that rhodopsins may be common photoreceptors of chlorophycean, prasinophycean and dinophycean algae. Thus, Chlamydomonas represents a useful new model for studying photoreceptor cells.

[1]  P. K. Brown,et al.  [243] Methodology of vitamin A and visual pigments , 1971 .

[2]  T. Ebrey,et al.  The blue membrane: the 3-dehydroretinal-based artificial pigment of the purple membrane. , 1978, Biochemistry.

[3]  A. Schimz,et al.  SUBSTITUTION OF RETINAL BY ANALOGUES IN RETINAL PIGMENTS OF HALOBACTERIUM HALOBIUM. CONTRIBUTION OF BACTERIORHODOPSIN AND HALORHODOPSIN TO PHOTOSENSORY ACTIVITY , 1983 .

[4]  K. Schletz Phototaxis bei Volvox - Pigmentsysteme der Lichtrichtungsperzeption , 1976 .

[5]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[6]  E. Cerdá-Olmedo,et al.  Regulation of Carotene Biosynthesis in Phycomyces by Vitamin A and β‐Ionone , 1974 .

[7]  G. Witman,et al.  Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella , 1983, The Journal of cell biology.

[8]  Y. Kito,et al.  Circular dichrosim of visual pigment analogues containing 3 -dehydroretinal and 5,6-epoxy-3-dehydroretinal as the chromophore. , 1973, Biochimica et biophysica acta.

[9]  D. Luck Genetic and biochemical dissection of the eucaryotic flagellum , 1984, The Journal of cell biology.

[10]  J. Goodenough,et al.  THE EFFECTS OF INHIBITORS AFFECTING PROTEIN SYNTHESIS AND MEMBRANE ACTIVITY ON THE CHLAMYDOMONAS REINHARDHII PHOTOTACTIC RHYTHM , 1981 .

[11]  K. Foster,et al.  Light Antennas in phototactic algae. , 1980, Microbiological reviews.

[12]  S. Dutcher,et al.  Uniflagellar mutants of chlamydomonas: Evidence for the role of basal bodies in transmission of positional information , 1982, Cell.

[13]  R. M. Hamilton,et al.  Replacement of riboflavin by an analogue in the blue-light photoreceptor of Phycomyces. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Barry Honig,et al.  An external point-charge model for bacteriorhodopsin to account for its purple color , 1980 .

[15]  V. Bruce,et al.  Stickiness to Glass: Circadian Changes in the Cell Surface of Chlamydomonas reinhardi. , 1979, Plant physiology.

[16]  A. Schimz,et al.  BACTERIORHODOPSIN AND THE SENSORY PIGMENT OF THE PHOTOSYSTEM 565 IN HALOBACTERIUM HALOBIUM , 1982 .

[17]  C. Brokaw,et al.  Bending patterns of chlamydomonas flagella I. Wild-type bending patterns. , 1983, Cell motility.

[18]  P. Halldal Ultraviolet Action Spectra of Positive and Negative Phototaxis in Platymonas subcordiformis , 1961 .

[19]  Michael G. Motto,et al.  Hydroretinals and hydrorhodopsins , 1979 .

[20]  S. Goff,et al.  The spectral properties of some visual pigment analogs. , 1973, Experimental eye research.

[21]  V. Balasubramaniyan,et al.  PREPARATION AND PROPERTIES OF NEW VISUAL PIGMENT ANALOGUES FROM 5,6‐DIHYDRORETINAL AND CATTLE OPSIN * , 1970 .

[22]  P. E. Blatz,et al.  N-retinylidene-1-amino-2-propanol: a Schiff base analog for rhodopsin. , 1968, Vision research.

[23]  Michael G. Motto,et al.  Opsin shifts in bovine rhodopsin and bacteriorhodopsin. Comparison of two external point-charge models , 1980 .

[24]  K. Nakanishi,et al.  [64] Synthetic analogs of retinal, bacteriorhodopsin, and bovine rhodopsin , 1982 .

[25]  Michael G. Motto,et al.  An external point-charge model for wavelength regulation in visual pigments , 1979 .

[26]  G. A. Hudock,et al.  Growth, Ultrastructure and Carotenoid Spectra of the Chlorophyll-less y-y Mutant of Chlamydomonas reinhardtii , 1983 .

[27]  R. Forward Phototaxis by the dinoflagellate Gymnodinium splendens Lebour. , 1974, The Journal of protozoology.

[28]  J. Nathans,et al.  Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin , 1983, Cell.

[29]  O. Sineshchekov,et al.  Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis , 1978, Nature.