Boundary Handling at Cloth–Fluid Contact

We present a robust and efficient method for the two‐way coupling between particle‐based fluid simulations and infinitesimally thin solids represented by triangular meshes. Our approach is based on a hybrid method that combines a repulsion force approach with a continuous intersection handling to guarantee that no penetration occurs. Moreover, boundary conditions for the tangential component of the fluid's velocity are implemented to model the different slip conditions. The proposed method is particularly useful for dynamic surfaces, like cloth and thin shells. In addition, we demonstrate how standard fluid surface reconstruction algorithms can be modified to prevent the calculated surface from intersecting close objects. For both the two‐way coupling and the surface reconstruction, we take into account that the fluid can wet the cloth. We have implemented our approach for the bidirectional interaction between liquid simulations based on Smoothed Particle Hydrodynamics (SPH) and standard mesh‐based cloth simulation systems.

[1]  Matthias Teschner,et al.  Coupling elastic solids with smoothed particle hydrodynamics fluids , 2013, Comput. Animat. Virtual Worlds.

[2]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[3]  Matthias Teschner,et al.  Boundary Handling and Adaptive Time-stepping for PCISPH , 2010, VRIPHYS.

[4]  Takahiro Harada,et al.  Smoothed particle hydrodynamics in complex shapes , 2007, SCCG.

[5]  Aimin Hao,et al.  Realtime Two‐Way Coupling of Meshless Fluids and Nonlinear FEM , 2012, Comput. Graph. Forum.

[6]  Markus H. Gross,et al.  Eurographics Symposium on Point-based Graphics (2005) a Unified Lagrangian Approach to Solid-fluid Animation , 2022 .

[7]  Matthias Teschner,et al.  A Parallel SPH Implementation on Multi‐Core CPUs , 2011, Comput. Graph. Forum.

[8]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[9]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[10]  S. Patkar,et al.  Wetting of Porous Solids , 2013, IEEE Transactions on Visualization and Computer Graphics.

[11]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[12]  Nadia Magnenat-Thalmann,et al.  Physical simulation of wet clothing for virtual humans , 2012, The Visual Computer.

[13]  Lanfen Lin,et al.  A fluid/cloth coupling method for high velocity collision simulation , 2012, VRCAI '12.

[14]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[15]  Nadia Magnenat-Thalmann,et al.  Simple linear bending stiffness in particle systems , 2006, SCA '06.

[16]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[17]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[18]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[19]  Daniel Weiskopf,et al.  Cloth-Fluid Contact , 2013, VMV.

[20]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[21]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Ronald Fedkiw,et al.  Accurate Tangential Velocities For Solid Fluid Coupling , 2009 .

[23]  Philip Dutré,et al.  Unified SPH model for fluid-shell simulations , 2008, SIGGRAPH '08.

[24]  Julie Dorsey,et al.  Rendering of Wet Materials , 1999, Rendering Techniques.

[25]  Robert Bridson,et al.  Fluid simulation: SIGGRAPH 2007 course notesVideo files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[26]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[27]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[28]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[29]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[30]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[31]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[32]  Xavier Provot,et al.  Collision and self-collision handling in cloth model dedicated to design garments , 1997, Computer Animation and Simulation.

[33]  Greg Turk,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA 2010.

[34]  Nadia Magnenat-Thalmann,et al.  A simple approach to nonlinear tensile stiffness for accurate cloth simulation , 2009, TOGS.

[35]  Philip Dutré,et al.  Porous flow in particle-based fluid simulations , 2008, ACM Trans. Graph..

[36]  Matthias Teschner,et al.  Implicit Incompressible SPH , 2014, IEEE Transactions on Visualization and Computer Graphics.

[37]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[38]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[39]  Roman Durikovic,et al.  SPH with small scale details and improved surface reconstruction , 2011, SCC.

[40]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[41]  Matthias Teschner,et al.  Interaction of fluids with deformable solids: Research Articles , 2004 .

[42]  R. Pajarola,et al.  Predictive-corrective incompressible SPH , 2009, SIGGRAPH 2009.

[43]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[44]  JungHyun Han,et al.  Porous deformable shell simulation with surface water flow and saturation , 2013, Comput. Animat. Virtual Worlds.

[45]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..