The skiving stock problem and its relation to hypergraph matchings

Abstract We consider the one-dimensional skiving stock problem which is strongly related to the dual bin packing problem: find the maximum number of products with minimum length L that can be constructed by connecting a given supply of m ∈ N smaller item lengths l 1 , … , l m with availabilities b 1 , … , b m . For this NP -hard optimization problem, we investigate the quality of the proper relaxation by considering the proper gap, i.e., the difference between the optimal objective values of the proper relaxation and the skiving stock problem itself. In this regard, we introduce a theory to obtain the proper gap on the basis of hypergraph matchings. As a main contribution, we characterize those hypergraphs that belong to an instance of the skiving stock problem, and consider the special case of 2-uniform hypergraphs in more detail. Moreover, this particular class is shown to correspond one-to-one and onto a certain power set. Based on this result, the number of related non-isomorphic hypergraphs and their possible proper gaps can be calculated explicitly.

[1]  John L. Bruno,et al.  Probabilistic bounds for dual bin-packing , 1985, Acta Informatica.

[2]  Sherali Zeadally,et al.  Spectrum Assignment in Cognitive Radio Networks: A Comprehensive Survey , 2013, IEEE Communications Surveys & Tutorials.

[3]  Claude Berge Packing Problems and Hypergraph Theory: A Survey , 1979 .

[4]  Noga Alon,et al.  On-Line and Off-Line Approximation Algorithms for Vector Covering Problems , 1998, Algorithmica.

[5]  Zoltán Füredi,et al.  Matchings and covers in hypergraphs , 1988, Graphs Comb..

[6]  Laurence A. Wolsey Valid inequalities, covering problems and discrete dynamic programs , 1977 .

[7]  A. Adrian Albert,et al.  An Introduction to Finite Projective Planes , 1970 .

[8]  Joseph Y.-T. Leung,et al.  On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.

[9]  José M. Valério de Carvalho,et al.  LP models for bin packing and cutting stock problems , 2002, Eur. J. Oper. Res..

[10]  John Martinovic,et al.  Integer linear programming models for the skiving stock problem , 2016, Eur. J. Oper. Res..

[11]  Zoltán Füredi,et al.  On the fractional matching polytope of a hypergraph , 1993, Comb..

[12]  Gilbert Laporte,et al.  An exact algorithm for the dual bin packing problem , 1995, Oper. Res. Lett..

[13]  Pratik J. Parikh,et al.  A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital , 2013, Eur. J. Oper. Res..

[14]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[15]  John Martinovic,et al.  The proper relaxation and the proper gap of the skiving stock problem , 2016, Math. Methods Oper. Res..

[16]  José M. Valério de Carvalho,et al.  A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems , 2018, Eur. J. Oper. Res..

[17]  Christoph Nitsche,et al.  Tighter relaxations for the cutting stock problem , 1999, Eur. J. Oper. Res..

[18]  John Martinovic,et al.  LP-Based Relaxations of the Skiving Stock Problem - Improved Upper Bounds for the Gap , 2015, OR.

[19]  Susan Fera. Assmann Problems in discrete applied mathematics , 1983 .

[20]  Yan Liu,et al.  The fractional matching numbers of graphs , 2002, Networks.

[21]  J. B. G. Frenk,et al.  Probabilistic Analysis of Algorithms for Dual Bin Packing Problems , 1991, J. Algorithms.

[22]  Fred W. Glover,et al.  A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem , 2004, J. Heuristics.

[23]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[24]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[25]  Sascha Kurz,et al.  Minimal Proper Non-IRUP Instances of the One-Dimensional Cutting Stock Problem , 2014, Discret. Appl. Math..

[26]  E. J. Zak The skiving stock problem as a counterpart of the cutting stock problem , 2003 .

[27]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[28]  P. Hammer,et al.  Aggregation of inequalities in integer programming. , 1975 .

[29]  M. P. Johnson,et al.  Case Studies from Industry: Skiving Addition to the Cutting Stock Problem in the Paper Industry , 1997, SIAM Rev..

[30]  Yuk Hei,et al.  On Linear Programming Relaxations of Hypergraph Matching , 2009 .

[31]  João Pedro Pedroso,et al.  Bin packing and related problems: General arc-flow formulation with graph compression , 2013, Comput. Oper. Res..

[32]  Yan Chen,et al.  A heuristic for the skiving and cutting stock problem in paper and plastic film industries , 2019, Int. Trans. Oper. Res..

[33]  Claude Berge Introduction à la théorie des hypergraphes , 1973 .

[34]  John Martinovic,et al.  On the Solution of Generalized Spectrum Allocation Problems , 2016, OR.

[35]  Andrew M. Gleason FINITE FANO PLANES. , 1956 .

[36]  Zeger Degraeve,et al.  Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem , 2006, Eur. J. Oper. Res..

[37]  John Martinovic,et al.  Integer Linear Programming Formulations for Cognitive Radio Resource Allocation , 2017, IEEE Wireless Communications Letters.

[38]  C. Berge,et al.  SUR UN THEOREMS DU TYPE KÖNIG POUR HYPERGRAPHES , 1970 .

[39]  Jaehoon Kim,et al.  The difference and ratio of the fractional matching number and the matching number of graphs , 2015, Discret. Math..

[40]  John Martinovic,et al.  Integer rounding and modified integer rounding for the skiving stock problem , 2016, Discret. Optim..

[41]  Zoltán Füredi,et al.  Maximum degree and fractional matchings in uniform hypergraphs , 1981, Comb..

[42]  Manuel Iori,et al.  Bin packing and cutting stock problems: Mathematical models and exact algorithms , 2016, Eur. J. Oper. Res..