Thec-2d-Index of Oriented Matroids

We obtain an explicit method to compute thecd-index of the lattice of regions of an oriented matroid from theab-index of the corresponding lattice of flats. Since thecd-index of the lattice of regions is a polynomial in the ring Z(c,2d), we call it thec-2d-index. As an application we obtain a zonotopal analogue of a conjecture of Stanley: among all zonotopes the cubical lattice has the smallestc-2d-index coefficient-wise. We give a new combinatorial description for thec-2d-index of the cubical lattice and thecd-index of the Boolean algebra in terms of all the permutations in the symmetric groupSn. Finally, we show that only two-thirds of the?(S)'sof the lattice of flats are needed for thec-2d-index computation.

[1]  S. Sundaram The Homology of Partitions with an Even Number of Blocks , 1995 .

[2]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[3]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[4]  R. Ehrenborg On Posets and Hopf Algebras , 1996 .

[5]  Richard Ehrenborg,et al.  The cd-Index of Zonotopes and Arrangements , 1998 .

[6]  Richard P. Stanley,et al.  Finite lattices and Jordan-Hölder sets , 1974 .

[7]  Gábor Hetyei On thecd-variation polynomials of André and simsun permutations , 1996, Discret. Comput. Geom..

[8]  R. Stanley Combinatorics and commutative algebra , 1983 .

[9]  Richard P. Stanley,et al.  A Survey of Eulerian Posets , 1994 .

[10]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[11]  B. Sturmfels Oriented Matroids , 1993 .

[12]  Joseph P. S. Kung,et al.  Gian-Carlo Rota on combinatorics : introductory papers and commentaries , 1995 .

[13]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[14]  Gábor Hetyei,et al.  Permutation Trees and Variation Statistics , 1998, Eur. J. Comb..

[15]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[16]  Louis J. Billera,et al.  The Combinatorics of Permutation Polytopes , 1994, Formal Power Series and Algebraic Combinatorics.

[17]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[18]  G. Ziegler Lectures on Polytopes , 1994 .

[19]  Richard Ehrenborg,et al.  Coproducts and the cd-Index , 1998 .

[20]  D. Foata CHAPTER 16 – Nombres d'Euler et Permutations Alternantes , 1973 .

[21]  Louis J. Billera,et al.  Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets , 1985 .

[22]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[23]  Richard Ehrenborg,et al.  The r-cubical Lattice and a Generalization of the cd-index , 1996, Eur. J. Comb..

[24]  M. Purtill André permutations, lexicographic shellability and the cd-index of a convex polytope , 1993 .

[25]  Gil Kalai,et al.  A new basis of polytopes , 1988, J. Comb. Theory, Ser. A.

[26]  R. Stanley Flagf-vectors and thecd-index , 1994 .