Entanglement demonstration on board a nano-satellite

Global quantum networks for secure communication can be realized using large fleets of satellites distributing entangled photon pairs between ground-based nodes. Because the cost of a satellite depends on its size, the smallest satellites will be most cost-effective. This Letter describes a miniaturized, polarization entangled, photon-pair source operating on board a nano-satellite. The source violates Bell’s inequality with a Clauser–Horne–Shimony–Holt parameter of 2.60±0.06. This source can be combined with optical link technologies to enable future quantum communication nano-satellite missions.

[1]  Paolo Villoresi,et al.  Experimental Satellite Quantum Communications. , 2014, Physical review letters.

[2]  Tom Vergoossen,et al.  Satellite constellations for trusted node QKD networks. , 2019, 1903.07845.

[3]  Alexander Ling,et al.  High fidelity field stop collection for polarization-entangled photon pair sources , 2018, Applied Physics Letters.

[4]  Russell R. Boyce,et al.  Design considerations for an optical link supporting intersatellite quantum key distribution , 2019, Optical Engineering.

[5]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[6]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[7]  A. Falcon Physics I.1 , 2018 .

[8]  H. Weinfurter,et al.  Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths , 2008, 0804.3799.

[9]  Manipulation and measurement of quantum states with liquid crystal devices. , 2019, Optics express.

[10]  Luo Sha,et al.  Generation and analysis of correlated pairs of photons on board a nanosatellite , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[11]  Experimental entangled photon pair generation using crystals with parallel optical axes. , 2017, Optics express.

[12]  Alexander Toet,et al.  Emerging Technologies in Security and Defence II; and Quantum-Physics-based Information Security III , 2014 .

[13]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[14]  森谷 祐一,et al.  Advanced Technologies , 2005, Contemporary Endoscopic Spine Surgery.

[15]  A. Ling,et al.  Broadband pumped polarization entangled photon-pair source in a linear beam displacement interferometer , 2019, Applied Physics Letters.

[16]  M. Toyoshima,et al.  Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite , 2017, 1707.08154.

[17]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[18]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[19]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[20]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[21]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[23]  Christian Kurtsiefer,et al.  Symmetrical Clock Synchronization with Time-Correlated Photon Pairs , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[24]  Matison,et al.  Experimental Test of Local Hidden-Variable Theories , 1972 .

[25]  Imran Khan,et al.  Quantum-limited measurements of optical signals from a geostationary satellite , 2016, ArXiv.

[26]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[27]  Catherine Holloway,et al.  The NanoQEY mission: ground to space quantum key and entanglement distribution using a nanosatellite , 2014, Security and Defence.

[28]  Paolo Villoresi,et al.  CubeSat quantum communications mission , 2017, EPJ Quantum Technology.

[29]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[30]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[31]  Alexander Ling,et al.  Quantum optics for space platforms , 2012 .

[32]  Zach DeVito,et al.  Opt , 2017 .

[33]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[34]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[35]  W. Marsden I and J , 2012 .

[36]  Andrew G. Glen,et al.  APPL , 2001 .

[37]  R. Ursin,et al.  Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration , 2018, EPJ Quantum Technology.

[38]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .