Link between supercurrent diode and anomalous Josephson effect revealed by gate-controlled interferometry

In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -- a $\varphi_0$-shift of the current-phase relation -- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate $\varphi_0$-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer. By electrostatic gating, we reveal a direct link between $\varphi_0$-shift and diode effect. Our findings show that the supercurrent diode effect mainly results from magnetochiral anisotropy induced by spin-orbit interaction in combination with a Zeeman field.

[1]  W. Wegscheider,et al.  Zeeman- and Orbital-Driven Phase Shifts in Planar Josephson Junctions , 2023, ACS nano.

[2]  K. T. Law,et al.  Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene , 2023, Nature communications.

[3]  J. Shabani,et al.  Superconducting Diode Effect Sign Change in Epitaxial Al-InAs Josepshon Junctions , 2023, 2303.01902.

[4]  M. Manfra,et al.  Mobility exceeding 100 000  cm2/V  s in modulation-doped shallow InAs quantum wells coupled to epitaxial aluminum , 2023, Physical Review Materials.

[5]  D. Loss,et al.  Parity-protected superconducting diode effect in topological Josephson junctions , 2023, Physical Review B.

[6]  M. Manfra,et al.  Sign reversal of the Josephson inductance magnetochiral anisotropy and 0–π-like transitions in supercurrent diodes , 2022, Nature Nanotechnology.

[7]  Y. Ang,et al.  Field-Effect Josephson Diode via Asymmetric Spin-Momentum Locking States , 2022, 2212.01980.

[8]  S. Harrington,et al.  Evidence of $\phi$0-Josephson junction from skewed diffraction patterns in Sn-InSb nanowires , 2022, 2212.00199.

[9]  K. T. Law,et al.  Josephson Diode Effect Induced by Valley Polarization in Twisted Bilayer Graphene. , 2022, Physical review letters.

[10]  E. Bakkers,et al.  The gate-tunable Josephson diode , 2022, 2211.14283.

[11]  C. Marcus,et al.  Nonreciprocal devices based on voltage-tunable junctions , 2022, 2209.06194.

[12]  S. Heun,et al.  Josephson Diode Effect in High-Mobility InSb Nanoflags , 2022, Nano letters.

[13]  Y. Lyanda-Geller,et al.  Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors , 2022, Nature Communications.

[14]  K. Jeon,et al.  Zero-field polarity-reversible Josephson supercurrent diodes enabled by a proximity-magnetized Pt barrier , 2022, Nature Materials.

[15]  T. McQueen,et al.  The field-free Josephson diode in a van der Waals heterostructure , 2022, Nature.

[16]  Y. Oreg,et al.  Signatures of a topological phase transition in a planar Josephson junction , 2022, Physical Review B.

[17]  G. Gardner,et al.  Anisotropic Vortex Squeezing in Synthetic Rashba Superconductors: A Manifestation of Lifshitz Invariants , 2022, Physical Review X.

[18]  M. Davydova,et al.  Universal Josephson diode effect , 2022, Science advances.

[19]  Yang Zhang,et al.  Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.

[20]  H. Scammell,et al.  Theory of zero-field superconducting diode effect in twisted trilayer graphene , 2021, 2D Materials.

[21]  Jiangping Hu,et al.  General Theory of Josephson Diodes , 2021, Physical Review X.

[22]  J. Hone,et al.  Zero-field superconducting diode effect in small-twist-angle trilayer graphene , 2021, Nature Physics.

[23]  M. Manfra,et al.  Effect of Rashba and Dresselhaus spin–orbit coupling on supercurrent rectification and magnetochiral anisotropy of ballistic Josephson junctions , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Y. Shin,et al.  Magnetic proximity-induced superconducting diode effect and infinite magnetoresistance in a van der Waals heterostructure , 2021, Physical Review Research.

[25]  Kenji Watanabe,et al.  Supercurrent diode effect and magnetochiral anisotropy in few-layer NbSe2 , 2021, Nature Communications.

[26]  S. Ilic,et al.  Theory of the Supercurrent Diode Effect in Rashba Superconductors with Arbitrary Disorder. , 2021, Physical review letters.

[27]  Yukio Tanaka,et al.  A phenomenological theory of superconductor diodes , 2021, New Journal of Physics.

[28]  A. Daido,et al.  Intrinsic Superconducting Diode Effect. , 2021, Physical review letters.

[29]  L. Fu,et al.  Supercurrent diode effect and finite-momentum superconductors , 2021, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Manfra,et al.  Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions , 2021, Nature Nanotechnology.

[31]  N. Yuan,et al.  Topological metals and finite-momentum superconductors , 2020, Proceedings of the National Academy of Sciences.

[32]  T. Ono,et al.  Observation of superconducting diode effect , 2020, Nature.

[33]  M. Manfra,et al.  Josephson Inductance as a Probe for Highly Ballistic Semiconductor-Superconductor Weak Links. , 2020, Physical review letters.

[34]  O. Durante,et al.  A Josephson phase battery , 2020, Nature Nanotechnology.

[35]  M. Manfra,et al.  Relating Andreev Bound States and Supercurrents in Hybrid Josephson Junctions. , 2019, Physical review letters.

[36]  K. Sardashti,et al.  Experimental measurements of effective mass in near-surface InAs quantum wells , 2019, 1911.02738.

[37]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[38]  I. Žutić,et al.  Phase Signature of Topological Transition in Josephson Junctions. , 2019, Physical review letters.

[39]  J. Shabani,et al.  Gate controlled anomalous phase shift in Al/InAs Josephson junctions , 2019, Nature Communications.

[40]  A. Yacoby,et al.  Tuning topological superconductivity in phase-controlled Josephson junctions with Rashba and Dresselhaus spin-orbit coupling , 2019, Physical Review B.

[41]  M. Manfra,et al.  Evidence of topological superconductivity in planar Josephson junctions , 2018, Nature.

[42]  P. Atkinson,et al.  Spin-Orbit induced phase-shift in Bi2Se3 Josephson junctions , 2018, Nature Communications.

[43]  J. Shabani,et al.  Transport properties of near surface InAs two-dimensional heterostructures , 2018, Applied Physics Letters.

[44]  Moon Jip Park,et al.  Finite momentum Cooper pairing in three-dimensional topological insulator Josephson junctions , 2018, Nature Communications.

[45]  V. A. Sablikov,et al.  Image-potential-induced spin-orbit interaction in one-dimensional electron systems , 2017, 1701.01987.

[46]  Anna Keselman,et al.  Topological Superconductivity in a Planar Josephson Junction , 2016, 1609.09482.

[47]  M. Salamon,et al.  Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review , 2016, Reports on progress in physics. Physical Society.

[48]  N. Takagi,et al.  Rashba splitting in an image potential state investigated by circular dichroism two-photon photoemission spectroscopy , 2016 .

[49]  Masatoshi Sato,et al.  Topological superconductors: a review , 2016, Reports on progress in physics. Physical Society.

[50]  D. Koelle,et al.  Quantum interference in an interfacial superconductor. , 2015, Nature nanotechnology.

[51]  E. Bakkers,et al.  Josephson ϕ0-junction in nanowire quantum dots , 2015, Nature Physics.

[52]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[53]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[54]  K. T. Law,et al.  Evidence for two-dimensional Ising superconductivity in gated MoS2 , 2015, Science.

[55]  Y. Nazarov,et al.  Anomalous Josephson effect induced by spin-orbit interaction and Zeeman effect in semiconductor nanowires , 2014, 1402.0305.

[56]  G. Schön,et al.  Spin-dependent cooper pair phase and pure spin supercurrents in strongly polarized ferromagnets. , 2009, Physical review letters.

[57]  G. Usaj,et al.  Anomalous Josephson current in junctions with spin polarizing quantum point contacts. , 2008, Physical review letters.

[58]  A. Buzdin Direct coupling between magnetism and superconducting current in the Josephson phi0 junction. , 2008, Physical review letters.

[59]  J. Mclaughlan,et al.  Spin-orbit splitting of image states , 2004, cond-mat/0407211.

[60]  M. Jonson,et al.  Chiral symmetry breaking and the Josephson current in a ballistic superconductor–quantum wire–superconductor junction , 2004 .

[61]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[62]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[63]  P. Wyder,et al.  Electrical magnetochiral anisotropy. , 2001, Physical review letters.

[64]  V. M. Edelstein The Ginzburg - Landau equation for superconductors of polar symmetry , 1996 .

[65]  I. F. Quercia Physics and applications of the Josephson effect , 1984 .

[66]  A. F. Andreev ELECTRON SPECTRUM OF THE INTERMEDIATE STATE OF SUPERCONDUCTORS , 1965 .

[67]  J. Fabian,et al.  Microscopic study of the Josephson supercurrent diode effect in 2DEG-based Josephson junctions , 2023 .

[68]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[69]  L. Molenkamp,et al.  Supplementary Information for Controlled Finite Momentum Pairing and Spatially Varying Order Parameter in Proximitized HgTe Quantum Wells , 2016 .

[70]  Lukas Furst,et al.  Superconductivity Of Metals And Alloys , 2016 .

[71]  W. Marsden I and J , 2012 .

[72]  C. Henley,et al.  Josephson Junctions , 1998 .

[73]  Victor M Edelstein The Ginzburg - Landau equation for superconductors of polar symmetry , 1996 .

[74]  I. O. Kulik Macroscopic Quantization and the Proximity Effect in S-N-S Junctions , 1969 .

[75]  Rachel McCrindle,et al.  private communication , 1969 .