IDR(s) with Higher-Order Stabilization Polynomials
暂无分享,去创建一个
[1] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[2] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[3] A. Bayliss,et al. An Iterative method for the Helmholtz equation , 1983 .
[4] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[5] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[6] P. Sonneveld,et al. IDR(s): A family of simple and fast algorithms for solving large nonsymmetric linear systems , 2007 .
[7] Gerard L. G. Sleijpen,et al. Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..
[8] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[9] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[10] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[11] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..