Impact of thermal boundary conductances on power dissipation and electrical breakdown of carbon nanotube network transistors

estimate the average CNT-SiO2 TBC as g � 0.16Wm � 1 K � 1 and the TBC at CNT junctions as GC � 2.4 pWK � 1 . We find the peak power dissipation in CN-TFTs is more strongly correlated to the TBC of the CNT-substrate interface than to the TBC at CNT junctions. Molecular dynamics simulations of crossed CNT junctions also reveal that the top CNT is buckled over � 30nm lengths, losing direct contact with the substrate and creating highly localized hot-spots. Our results provide new insights into CNT network properties which can be engineered to enhance performance of CN-TFTs for macro and flexible electronics applications. V C 2012 American

[1]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[2]  Eric Pop,et al.  Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates , 2007 .

[3]  S. Khondaker,et al.  Correlated electrical breakdown in arrays of high density aligned carbon nanotubes , 2011 .

[4]  Eric Pop,et al.  Thermal dissipation and variability in electrical breakdown of carbon nanotube devices , 2010, 1005.4350.

[5]  Eric Pop,et al.  Effect of carbon nanotube network morphology on thin film transistor performance , 2012, Nano Research.

[6]  Deyu Li,et al.  Contact thermal resistance between individual multiwall carbon nanotubes , 2010 .

[7]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[8]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[9]  F Cleri,et al.  Turning carbon nanotubes from exceptional heat conductors into insulators. , 2009, Physical review letters.

[10]  Eric Pop,et al.  Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO 2 , 2010 .

[11]  Z. Bao,et al.  Nanotubes on display: how carbon nanotubes can be integrated into electronic displays. , 2010, ACS nano.

[12]  A. Niknejad,et al.  Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. , 2012, Nano letters.

[13]  Eric Pop,et al.  Imaging dissipation and hot spots in carbon nanotube network transistors , 2011 .

[14]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[15]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[16]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[17]  Eric Pop,et al.  The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes , 2008, Nanotechnology.

[18]  J. Murthy,et al.  Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics , 2007 .

[19]  S. Mohammadi,et al.  Fully transparent pixel circuits driven by random network carbon nanotube transistor circuitry. , 2010, ACS nano.

[20]  John J Boland,et al.  Electrical connectivity in single-walled carbon nanotube networks. , 2009, Nano letters.

[21]  F. Xiong,et al.  Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes , 2012, Nano Research.

[22]  George Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[23]  Sigurd Wagner,et al.  Flexible membrane pressure sensor , 2005 .

[24]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[25]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[26]  Teruaki Motooka,et al.  Interatomic potential for Si–O systems using Tersoff parameterization , 2007 .

[27]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[28]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[29]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[30]  M. S. Fuhrer,et al.  Optimizing transistor performance of percolating carbon nanotube networks , 2010 .

[31]  S. Kishimoto,et al.  Flexible high-performance carbon nanotube integrated circuits. , 2011, Nature nanotechnology.

[32]  Y. Jung,et al.  Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing , 2011, Nanotechnology.

[33]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[34]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[35]  J. Rogers,et al.  Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. , 2007, Nano letters.

[36]  Andrew G. Gillies,et al.  Carbon nanotube active-matrix backplanes for conformal electronics and sensors. , 2011, Nano letters.

[37]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[38]  Jayathi Y. Murthy,et al.  Self-consistent electrothermal analysis of nanotube network transistors , 2011 .

[39]  Hsin-Ying Chiu,et al.  Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates , 2006 .

[40]  D. Pribat,et al.  Thin-Film Transistors and Circuits Based on Carbon Nanotubes , 2012, Journal of Display Technology.

[41]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[42]  P. Burke,et al.  Fundamental Limits on the Mobility of Nanotube‐Based Semiconducting Inks , 2011, Advanced materials.

[43]  Subhasish Mitra,et al.  CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. , 2009, Nano letters.

[44]  Robert H. Reuss,et al.  Macroelectronics: Perspectives on Technology and Applications , 2005, Proceedings of the IEEE.

[45]  J. Murthy,et al.  Percolating conduction in finite nanotube networks. , 2005, Physical review letters.

[46]  J. Coleman,et al.  The relationship between network morphology and conductivity in nanotube films , 2008 .

[47]  J. Murthy,et al.  Effect of percolation on thermal transport in nanotube composites , 2007 .

[48]  Current–Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A “Bottom-Up” Perspective , 2006, IEEE Electron Device Letters.

[49]  B. Rajasekharan,et al.  Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes , 2004 .

[50]  Zhenan Bao,et al.  Influence of electrostatic interactions on spin-assembled single-walled carbon nanotube networks on amine-functionalized surfaces. , 2010, ACS nano.