Wavelets and other bases for fast numerical linear algebra
暂无分享,去创建一个
[1] Bradley K. Alpert,et al. A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..
[2] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[3] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[4] G. Schulz. Iterative Berechung der reziproken Matrix , 1933 .
[5] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[6] B. K. Alpert. Construction of Simple Multiscale Bases for Fast Matrix Operations , 1991 .
[7] Bradley K. Alpert,et al. Sparse representation of smooth linear operators , 1991 .
[8] G. Beylkin. On the representation of operators in bases of compactly supported wavelets , 1992 .
[9] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[10] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[11] Gilbert Strang,et al. Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..
[12] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[13] B. K. Alpert. Rapidly-Convergent Quadratures for Integral Operators with Singular Kernels , 1990 .
[14] B. Alpert,et al. Wavelets for the Fast Solution of Second-Kind Integral Equations , 1990 .
[15] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .