CB-norm estimates for maps between noncommutative $L_p$-spaces and quantum channel theory

In the first part of this work we show how certain techniques from quantum information theory can be used in order to obtain very sharp embeddings between noncommutative $L_p$-spaces. Then, we use these estimates to study the classical capacity with restricted assisted entanglement of the quantum erasure channel and the quantum depolarizing channel. In particular, we exactly compute the capacity of the first one and we show that certain nonmultiplicative results hold for the second one.

[1]  Narutaka Ozawa,et al.  About the Connes Embedding Conjecture---Algebraic approaches--- , 2012, 1212.1700.

[2]  Yingkai Ouyang Upper bounds on the quantum capacity of some quantum channels using the coherent information of other channels , 2011 .

[3]  M. Junge,et al.  Mixed-norm Inequalities and Operator Space Lp Embedding Theory , 2010 .

[4]  Carlos Palazuelos,et al.  Channel capacities via $p$-summing norms , 2013, 1305.1020.

[5]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[6]  M. Junge,et al.  The norm of sums of independent noncommutative random variables in Lp(ℓ1) , 2005 .

[7]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[8]  Carlos Palazuelos,et al.  Rank-one quantum games , 2011, computational complexity.

[9]  P. Levy Processus stochastiques et mouvement brownien , 1948 .

[10]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[11]  Narutaka Ozawa,et al.  About the Connes embedding conjecture , 2013 .

[12]  Ion Nechita,et al.  Random quantum channels II: Entanglement of random subspaces, Rényi entropy estimates and additivity problems , 2009, 0906.1877.

[13]  Charles H. Bennett,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[14]  K. Audenaert A note on the p → q norms of 2-positive maps , 2009 .

[15]  Graeme Smith,et al.  Quantum channel capacities , 2010, 2010 IEEE Information Theory Workshop.

[16]  C. King The capacity of the quantum depolarizing channel , 2002, IEEE Trans. Inf. Theory.

[17]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[18]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[19]  M. Junge,et al.  Operator Space Embedding of Schatten p-Classes Into Von Neumann Algebra Preduals , 2008 .

[20]  Ion Nechita,et al.  Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon , 2009, 0905.2313.

[21]  Thomas Vidick,et al.  Elementary Proofs of Grothendieck Theorems for Completely Bounded Norms , 2012, 1206.4025.

[22]  Gilles Pisier,et al.  The operator Hilbert space OH, complex interpolation, and tensor norms , 1996 .

[23]  M. Junge,et al.  Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.

[24]  B. Collins,et al.  Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product , 2010, 1008.3099.

[25]  J. Lindenstrauss,et al.  Basic Concepts in the Geometry of Banach Spaces , 2001 .

[26]  E. Lieb,et al.  A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy , 2007, math/0701352.

[27]  Thomas Vidick,et al.  Quantum XOR Games , 2012, 2013 IEEE Conference on Computational Complexity.

[28]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.

[29]  M. Wolf,et al.  Unbounded Violation of Tripartite Bell Inequalities , 2007, quant-ph/0702189.

[30]  The operator Hilbert space , 2003 .

[31]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[32]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[33]  M. Wolf,et al.  Operator space theory: a natural framework for bell inequalities. , 2009, Physical review letters.

[34]  G. Pisier Non-commutative vector valued Lp-spaces and completely p-summing maps , 1993, math/9306206.

[35]  Mark M. Wilde,et al.  The quantum dynamic capacity formula of a quantum channel , 2010, Quantum Inf. Process..

[36]  S. Janson,et al.  Interpolation of analytic families of operators , 1984 .

[37]  Marius Junge,et al.  Embedding of the operator space OH and the logarithmic ‘little Grothendieck inequality’ , 2003, math/0410235.

[38]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[39]  R. Werner,et al.  On Some Additivity Problems in Quantum Information Theory , 2000, math-ph/0003002.

[40]  Yingkai Ouyang,et al.  Channel covariance, twirling, contraction, and some upper bounds on the quantum capacity , 2011, Quantum Inf. Comput..

[41]  M. Junge,et al.  Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.

[42]  J. Watrous,et al.  Notes on super-operator norms induced by schatten norms , 2004, Quantum Inf. Comput..

[43]  B. Collins,et al.  Eigenvectors and eigenvalues in a random subspace of a tensor product , 2012 .

[44]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[45]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[46]  Comparison of matrix norms on bipartite spaces , 2009, 0904.1710.