Origin of Enhanced Chemical Capacitance in La0.8Sr0.2CoO3-δ Thin Film Electrodes

[1]  Y. Shao-horn,et al.  Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells , 2011 .

[2]  Juergen Fleig,et al.  Relationship between Cation Segregation and the Electrochemical Oxygen Reduction Kinetics of La0.6Sr0.4CoO3−δ Thin Film Electrodes , 2011 .

[3]  D. Leonard,et al.  Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells , 2010 .

[4]  Y. Orikasa,et al.  Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. , 2010, Angewandte Chemie.

[5]  Guntae Kim,et al.  Electrochemical Properties of Nanocrystalline La0.5Sr0.5CoO3−x Thin Films† , 2010 .

[6]  Juergen Fleig,et al.  Optimized La0.6Sr0.4CoO3–δ Thin‐Film Electrodes with Extremely Fast Oxygen‐Reduction Kinetics , 2009 .

[7]  A. Unemoto,et al.  Nonlinear Analysis of the Oxygen Surface Reaction and Thermodynamic Behavior of La1-xSrxCoO3-δ , 2009 .

[8]  B. Yildiz,et al.  Electron tunneling characteristics on La0.7Sr0.3MnO3 thin-film surfaces at high temperature , 2009 .

[9]  Evidence of Germanium precipitation in phase-change Ge1-xTex thin films by Raman scattering , 2009 .

[10]  Y. Shao-horn Thickness Dependence of Oxygen Reduction Reaction Kinetics on Strontium-Substituted Lanthanum Manganese Perovskite Thin-Film Microelectrodes , 2009 .

[11]  Cortney R. Kreller,et al.  Measurement and Modeling of the Impedance Characteristics of Porous La1 − x Sr x CoO3 − δ Electrodes , 2009 .

[12]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[13]  Richard J. Curry,et al.  Measurement and validation of PbS nanocrystal energy levels , 2008 .

[14]  T. Ohnishi,et al.  Defects and transport in complex oxide thin films , 2008 .

[15]  A. D. Rata,et al.  Strain-induced insulator state and giant gauge factor of La0.7Sr0.3CoO3 films. , 2008, Physical review letters.

[16]  Harumi Yokokawa,et al.  Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics , 2008 .

[17]  S. Ogale,et al.  Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces , 2008 .

[18]  L. Gauckler,et al.  Thin films for micro solid oxide fuel cells , 2007 .

[19]  Jürgen Fleig,et al.  Quantitative Comparison of Mixed Conducting SOFC Cathode Materials by Means of Thin Film Model Electrodes , 2007 .

[20]  S. Adler,et al.  Measurement of Oxygen Exchange Kinetics on Thin-Film La0.6Sr0.4CoO3 − δ Using Nonlinear Electrochemical Impedance Spectroscopy , 2007 .

[21]  Bilge Yildiz,et al.  Probing Oxygen Reduction Reaction Kinetics of Sr-Doped LaMnO3 Supported on Y2O3-Stabilized ZrO2 EIS of Dense, Thin-Film Microelectrodes , 2007 .

[22]  E. Siebert,et al.  Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes , 2007 .

[23]  H. Tuller,et al.  Electrical and electrochemical characterization of microstructured thin film La1−xSrxCoO3 electrodes , 2006 .

[24]  F. Baumann,et al.  Thin Film Microelectrodes in SOFC Electrode Research , 2006 .

[25]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[26]  D. Schwartz,et al.  Nonlinear electrochemical impedance spectroscopy for solid oxide fuel cell cathode materials , 2006 .

[27]  H. Matsumoto,et al.  Oxygen nonstoichiometry of the perovskite-type oxide La1−xCaxCrO3−δ (x=0.1, 0.2, 0.3) , 2004 .

[28]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[29]  Tn,et al.  Ferroelectric and antiferroelectric coupling in superlattices of paraelectric perovskites at room temperature , 2003, cond-mat/0306449.

[30]  H. Brongersma,et al.  Silica poisoning of oxygen membranes , 2002 .

[31]  K. Kawamura,et al.  Determination of Oxygen Vacancy Concentration in a Thin Film of La0.6Sr0.4CoO3 − δ by an Electrochemical Method , 2002 .

[32]  P. Heide Systematic x‐ray photoelectron spectroscopic study of La1−xSrx‐based perovskite‐type oxides , 2002 .

[33]  H. Verweij,et al.  Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-δ studied with electrical conductivity relaxation , 2002 .

[34]  S. Perry,et al.  Electrical conductivity relaxation studies of an epitaxial La0.5Sr0.5CoO3−δ thin film , 2002 .

[35]  H. Fukunaga,et al.  Cathodic reaction mechanism of dense La0.6Sr0.4CoO3 and La0.81Sr0.09MnO3 electrodes for solid oxide fuel cells , 2000 .

[36]  R. Gunasekaran,et al.  Structural, electrical, and surface characteristics of La0.5Sr0.5CoO3 thin films prepared by pulsed-laser deposition , 1999 .

[37]  H. Verweij,et al.  High-temperature coulometric titration of La1-xSrxCoO3-δ : Evidence for the effect of electronic band structure on nonstoichiometry behavior , 1997 .

[38]  M. Lankhorst,et al.  Thermodynamic Quantities and Defect Structure of La0.6Sr0.4Co1−yFeyO3−δ(y=0–0.6) from High-Temperature Coulometric Titration Experiments , 1997 .

[39]  J. Speck,et al.  GROWTH-RELATED STRESS AND SURFACE MORPHOLOGY IN HOMOEPITAXIAL SRTIO3 FILMS , 1996 .

[40]  B. Steele,et al.  Study of oxygen ion transport in acceptor doped samarium cobalt oxide , 1995 .

[41]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .