A Modal Interface Theory for Component-based Design

This paper presents the modal interface theory, a unification of interface automata and modal specifications, two radically dissimilar models for interface theories. Interface automata is a game-based model, which allows the designer to express assumptions on the environment and which uses an optimistic view of composition: two components can be composed if there is an environment where they can work together. Modal specifications are a language theoretic account of a fragment of the modal mu-calculus logic with a rich composition algebra which meets certain methodological requirements but which does not allow the environment and the component to be distinguished. The present paper contributes a more thorough unification of the two theories by correcting a first attempt in this direction by Larsen et al., drawing a complete picture of the modal interface algebra, and pushing the comparison between interface automata, modal automata and modal interfaces even further. The work reported here is based on earlier work presented in [41] and [42].

[1]  Robin Milner,et al.  A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors , 1989, Inf. Comput..

[2]  Roberto Passerone,et al.  Why Are Modalities Good for Interface Theories? , 2009, 2009 Ninth International Conference on Application of Concurrency to System Design.

[3]  Thomas A. Henzinger,et al.  Timed Interfaces , 2002, EMSOFT.

[4]  Axel Legay,et al.  Some Models and Tools for Open Systems , 2009, ArXiv.

[5]  Nancy A. Lynch,et al.  An introduction to input/output automata , 1989 .

[6]  Axel Legay,et al.  Ticc: A Tool for Interface Compatibility and Composition , 2006, CAV.

[7]  Nathalie Bertrand,et al.  A Compositional Approach on Modal Specifications for Timed Systems , 2009, ICFEM.

[8]  Radha Jagadeesan,et al.  Abstraction-Based Model Checking Using Modal Transition Systems , 2001, CONCUR.

[9]  Thomas A. Henzinger,et al.  Interface theories with component reuse , 2008, EMSOFT '08.

[10]  Jean-Baptiste Raclet,et al.  Modal Contracts for Component-Based Design , 2009, 2009 Seventh IEEE International Conference on Software Engineering and Formal Methods.

[11]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[12]  Kim G. Larsen,et al.  Complexity of Decision Problems for Mixed and Modal Specifications , 2008, FoSSaCS.

[13]  Nicolas Markey,et al.  Timed Concurrent Game Structures , 2007, CONCUR.

[14]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[15]  Thomas A. Henzinger,et al.  The Embedded Systems Design Challenge , 2006, FM.

[16]  Kim G. Larsen,et al.  On determinism in modal transition systems , 2009, Theor. Comput. Sci..

[17]  Jean-Baptiste Raclet Quotient de spécifications pour la réutilisation de composants , 2007 .

[18]  Roberto Passerone,et al.  A Generic Model of Contracts for Embedded Systems , 2007, ArXiv.

[19]  Thomas A. Henzinger,et al.  The Element of Surprise in Timed Games , 2003, CONCUR.

[20]  Edward A. Lee,et al.  Taming heterogeneity - the Ptolemy approach , 2003, Proc. IEEE.

[21]  Joseph Sifakis,et al.  Automatic Verification Methods for Finite State Systems , 1989, Lecture Notes in Computer Science.

[22]  Sophie Pinchinat,et al.  Modal Specifications for the Control Theory of Discrete Event Systems , 2007, Discret. Event Dyn. Syst..

[23]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[24]  Jan Maluszy¿ski Verification, Model Checking, and Abstract Interpretation , 2009, Lecture Notes in Computer Science.

[25]  Joseph Sifakis,et al.  A Notion of Glue Expressiveness for Component-Based Systems , 2008, CONCUR.

[26]  Maurice Nivat,et al.  Metric Interpretations of Infinite Trees and Semantics of non Deterministic Recursive Programs , 1980, Theor. Comput. Sci..

[27]  J. F. M. Burg,et al.  Linguistic instruments in requirements engineering , 1996 .

[28]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[29]  Kim G. Larsen,et al.  Playing Games with Timed Games , 2009, ADHS.

[30]  Axel Legay,et al.  Sociable Interfaces , 2005, FroCoS.

[31]  Jakob Rehof,et al.  Stuck-Free Conformance Theory for CCS , 2004 .

[32]  Thomas A. Henzinger,et al.  Interface automata , 2001, ESEC/FSE-9.

[33]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[34]  Kim G. Larsen,et al.  Modal I/O Automata for Interface and Product Line Theories , 2007, ESOP.

[35]  C. A. R. Hoare,et al.  Stuck-Free Conformance , 2004, CAV.

[36]  Thomas A. Henzinger,et al.  Synchronous and Bidirectional Component Interfaces , 2002, CAV.

[37]  Sophie Quinton,et al.  Contract-Based Verification of Hierarchical Systems of Components , 2008, 2008 Sixth IEEE International Conference on Software Engineering and Formal Methods.

[38]  Purandar Bhaduri,et al.  Synthesis of Interface Automata , 2005, ATVA.

[39]  Axel Legay,et al.  Modal interfaces: unifying interface automata and modal specifications , 2009, EMSOFT '09.

[40]  Kim G. Larsen,et al.  Modal Specifications , 1989, Automatic Verification Methods for Finite State Systems.

[41]  Orna Grumberg,et al.  Abstract interpretation of reactive systems , 1997, TOPL.

[42]  Jean-Baptiste Raclet,et al.  Residual for Component Specifications , 2008, Electron. Notes Theor. Comput. Sci..

[43]  Orna Grumberg,et al.  \emph{Don't know} in the $μ$-calculus , 2005 .

[44]  Nathalie Bertrand,et al.  Refinement and Consistency of Timed Modal Specifications , 2009, LATA.

[45]  David Harel,et al.  LSCs: Breathing Life into Message Sequence Charts , 1999, Formal Methods Syst. Des..

[46]  Orna Grumberg,et al.  Don't Know in the µ-Calculus , 2005, VMCAI.

[47]  Luca de Alfaro,et al.  Game Models for Open Systems , 2003, Verification: Theory and Practice.

[48]  Walter Vogler,et al.  Conjunction on processes: Full abstraction via ready-tree semantics , 2007, Theor. Comput. Sci..