Magnesium Fluoride (MgF2)

Publisher Summary Magnesium fluoride (MgF2) is a tetragonal material with TiO2 (rutile) structure. The unit cell contains two formula units. Magnesium ions occupy octahedral sites with D2h point symmetry. Fluorine-ion positions in the unit cell are known from X-ray diffraction measurements. A wide transparency range from 0.12 to 8 μm, good mechanical properties, and low optical index of refraction makes magnesium fluoride a desirable material for coatings and interference filters. MgF2 is a positive uniaxial material, with its highest birefringence in the ultraviolet. It occurs naturally as the mineral selliate. Single-crystal MgF2 is widely used for windows, lenses, polarizers, and other optical components. Optical-quality, hot-pressed polycrystalline MgF2 is also used for optical components, particularly in the infrared. MgF2 is used as a divalent-ion host material for solid-state lasers. Vanadium, nickel, and cobalt are used as dopants to produce tunable solid-state lasers in the infrared. The ultraviolet and Infrared transparency of MgF2 lends itself to many applications.

[1]  David Smith,et al.  Refractive index of some oxide and fluoride coating materials. , 1979, Applied optics.

[2]  Michael E. Thomas,et al.  A Computer Code For Modeling Optical Properties Of Window Materials , 1989, Defense, Security, and Sensing.

[3]  L. Johnson,et al.  Phonon-Terminated Optical Masers , 1966 .

[4]  G. Hunt,et al.  Far-Infrared Reflectance and Transmittance of Potassium Magnesium Fluoride and Magnesium Fluoride , 1964 .

[5]  A. L. Olsen,et al.  Transmittance of Single-Crystal Magnesium Fluoride and IRTRAN-1* in the 0.2- to 15-μ Range , 1963 .

[6]  G. Stephan,et al.  Optical Anisotropy of MgF, in Its UV Absorption Region , 1973 .

[7]  I. W. Salter,et al.  Thermal and Structural Constants of Magnesium Fluoride and Zinc Sulphide for Optical Coating Applications , 1986 .

[8]  E. T. Arakawa,et al.  Optical Properties of Magnesium Fluoride in the Vacuum Ultraviolet , 1967 .

[9]  E. Palik A MgF(2) Soleil Compensator for the Near Infrared. , 1968, Applied optics.

[10]  A. Barrière,et al.  Optical transitions in disordered thin films of the ionic compounds MgF(2) and AIF(3) as a function of their conditions of preparation. , 1977, Applied optics.

[11]  W. Hunter,et al.  Reflectance of Aluminum Overcoated with MgF(2) and LiF in the Wavelength Region from 1600 A to 300 A at Various Angles of Incidence. , 1971, Applied optics.

[12]  C. Benoit,et al.  Infrared spectra of iron, zinc and magnesium fluorides: I. Analysis of results , 1988 .

[13]  J. Fontanella,et al.  Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO , 1974 .

[14]  T. F. Deutsch,et al.  Absorption coefficient of infrared laser window materials , 1973 .

[15]  J. Fontanella,et al.  Pressure variation of the low‐frequency dielectric constants of some anisotropic crystals , 1981 .

[16]  W J Tropf,et al.  Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency. , 1988, Applied optics.

[17]  L. E. Regalado,et al.  Determination of the optical constants of MgF(2) and ZnS from spectrophotometric measurements and the classical oscillator method. , 1988, Applied optics.

[18]  A. King,et al.  Temperature dependence of the optical birefringence of Mn F 2 , Mg F 2 , and Zn F 2 , 1984 .

[19]  A Duncanson,et al.  Some Properties of Magnesium Fluoride crystallized from the Melt , 1958 .

[20]  H. Craighead,et al.  Vacuum ultraviolet loss in magnesium fluoride films. , 1984, Applied optics.

[21]  Michael E. Thomas,et al.  A Comprehensive Model For The Intrinsic Transmission Properties Of Optical Windows , 1988, Defense, Security, and Sensing.

[22]  Philip J. Martin,et al.  Influence of ion assistance on the optical properties of MgF(2). , 1987, Applied optics.

[23]  H. Li,et al.  Refractive index of alkali halides and its wavelength and temperature derivatives , 1976 .

[24]  E. T. Arakawa,et al.  Optical Properties of MgO and MgF2 in the Extreme Ultraviolet Region , 1972 .

[25]  V Chandrasekharan,et al.  Anomalous dispersion of birefringence of sapphire and magnesium fluoride in the vacuum ultraviolet. , 1969, Applied optics.

[26]  Walter B. Fowler,et al.  Fabrication Of MgF2 and LiF Windows For The Hubble Space Telescope Imaging Sprectrograph , 1988, Defense, Security, and Sensing.

[27]  F. Forbes,et al.  A polarizer for the vacuum ultraviolet. , 1967, Applied optics.

[28]  Mme S. Robin,et al.  Properties optiques et spectre electronique du MgF2 et du CaF2 de 10 à 48 eV , 1968 .

[29]  W Viehmann,et al.  Photomultiplier window materials under electron irradiation: fluorescence and phosphorescence. , 1975, Applied optics.

[30]  W. Hunter,et al.  Reflection polarizers for the vacuum ultraviolet using Al + MgF(2) mirrors and an MgF(2) plate. , 1978, Applied optics.

[31]  P. Moulton Pulse-pumped operation of divalent transition-metal lasers , 1982 .

[32]  W. Johnson,et al.  Magnesium Fluoride Polarizing Prism for the Vacuum Ultraviolet , 1964 .

[33]  B. Bates,et al.  Optical properties of multilayer overcoated aluminum films in the uv (2000-2500 A). , 1976, Applied optics.

[34]  T. C. Damen,et al.  Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2 , 1967 .

[35]  A. S. Barker Transverse and Longitudinal Optic Mode Study in MgF2and ZnF2 , 1964 .

[36]  Albert Feldman,et al.  Optical materials characterization final technical report february 1, 1978-september 30, 1978. Technical note , 1979 .

[37]  D. Turnbull,et al.  Solid State Physics: Advances in Research and Applications, Volume 17 , 1966 .

[38]  M. W. Williams,et al.  Optical properties of crystalline MgF(2) from 115 nm to 400 nm. , 1979, Applied optics.

[39]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[40]  High-Intensity Limit of Thomson Scattering , 1963 .