β-expansion attractors observed in A/D converters.

The recently proposed β-encoders, analog-to-digital converters using an amplifier with a factor β and a flaky quantizer with threshold ν, have proven to be explained by the deterministic dynamics of multi-valued Rényi-Parry maps. Such a map is locally eventually onto [ν-1, ν), which is topologically conjugate to Parry's (β,α)-map with α=(β-1)(ν-1). This implies that β-encoders have a closed subinterval [ν-1,ν), which includes an attractor. Thus, the iteration of the multi-valued Rényi-Parry map performs the β-expansion of x while quantization errors in β-encoders behave chaotically and do not converge to a fixed point. This β-expansion attractor is relatively simpler than previously reported attractors. The object of this paper is twofold: to observe the embedded attractors in the β-encoder and to identify attractors that are useful for spread-spectrum codes and optimization techniques using pseudo-random numbers.

[1]  Paul R. Gray,et al.  A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3- mu m CMOS , 1991 .

[2]  Ingrid Daubechies,et al.  Single-Bit Oversampled A/D Conversion With Exponential Accuracy in the Bit Rate , 2007, IEEE Transactions on Information Theory.

[3]  W. Parry On theβ-expansions of real numbers , 1960 .

[4]  Leopold Flatto,et al.  Geodesic flows, interval maps, and symbolic dynamics , 1991 .

[5]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[6]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[7]  R. Ward,et al.  On Robustness Properties of Beta Encoders and Golden Ratio Encoders , 2008, IEEE Transactions on Information Theory.

[8]  P. Góra Invariant densities for generalized β-maps , 2007, Ergodic Theory and Dynamical Systems.

[9]  D. Ruelle Small random perturbations of dynamical systems and the definition of attractors , 1981 .

[10]  Tohru Kohda Information sources using chaotic dynamics , 2001 .

[11]  Hiroshi Inose,et al.  A unity bit coding method by negative feedback , 1963 .

[12]  W. Parry Representations for real numbers , 1964 .

[13]  Ronald A. DeVore,et al.  Beta expansions: a new approach to digitally corrected A/D conversion , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[14]  Yoichiro Takahashi,et al.  Markov subshifts and realization of β-expansions , 1974 .

[15]  Özgür Yilmaz,et al.  Robust and Practical Analog-to-Digital Conversion With Exponential Precision , 2006, IEEE Transactions on Information Theory.

[16]  Özgür Yilmaz,et al.  The Golden Ratio Encoder , 2008, IEEE Transactions on Information Theory.

[17]  K. Dajani,et al.  From greedy to lazy expansions and their driving dynamics , 2002 .

[18]  P. Erdos,et al.  On the uniqueness of the expansions 333-01333-01333-01 , 1991 .

[19]  Mikio Hasegawa,et al.  Realizing Ideal Spatiotemporal Chaotic Searching Dynamics for Optimization Algorithms Using Neural Networks , 2010, ICONIP.

[20]  Tohru Kohda,et al.  Variances of multiple access interference code average against data average , 2000 .

[21]  一幸 合原,et al.  Circuit Implementation of an A/D Converter Based on the Scale-Adjusted β-Map Using a Discrete-Time Integrator , 2010 .

[22]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[23]  Vilmos Komornik,et al.  Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems , 1990 .

[24]  James C. Candy,et al.  A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital Converters , 1974, IEEE Trans. Commun..

[25]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[26]  Ronald A. DeVore,et al.  A/D conversion with imperfect quantizers , 2006, IEEE Transactions on Information Theory.

[27]  TOHRU KOHDA,et al.  Beta encoders: Symbolic Dynamics and Electronic Implementation , 2012, Int. J. Bifurc. Chaos.

[28]  W. Parry Symbolic dynamics and transformations of the unit interval , 1966 .

[29]  W. Parry Intrinsic Markov chains , 1964 .

[30]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[31]  Susanne Kopte,et al.  and Related Problems , 1997 .