Local rule distributions, language complexity and non-uniform cellular automata

This paper investigates a variant of cellular automata, namely @n-CA. Indeed, @n-CA are cellular automata which can have different local rules at each site of their lattice. The assignment of local rules to sites of the lattice completely characterizes @n-CA. In this paper, sets of assignments sharing some interesting properties are associated with languages of bi-infinite words. The complexity classes of these languages are investigated providing an initial rough classification of @n-CA.

[1]  Tyll Krüger,et al.  Topological and symbolic dynamics for hyperbolic systems with holes , 2010, Ergodic Theory and Dynamical Systems.

[2]  Alberto Dennunzio,et al.  A Predator-Prey Cellular Automaton with Parasitic Interactions and Environmental Effects , 2008, Fundam. Informaticae.

[3]  Enrico Formenti,et al.  On the directional dynamics of additive cellular automata , 2009, Theor. Comput. Sci..

[4]  Klaus Sutner,et al.  De Bruijn Graphs and Linear Cellular Automata , 1991, Complex Syst..

[5]  Enrico Formenti,et al.  Number-conserving cellular automata I: decidability , 2003, Theor. Comput. Sci..

[6]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[7]  Enrico Formenti,et al.  Non-uniform cellular automata: Classes, dynamics, and decidability , 2011, Inf. Comput..

[8]  Jarkko Kari The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..

[9]  M. W. Shields An Introduction to Automata Theory , 1988 .

[10]  Pietro Di Lena,et al.  On the undecidability of the limit behavior of Cellular Automata , 2010, Theor. Comput. Sci..

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  A. Anderson,et al.  Stability analysis of a hybrid cellular automaton model of cell colony growth. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Nino Boccara,et al.  Number-conserving cellular automaton rules , 1999, Fundam. Informaticae.

[14]  Pierre Guillon,et al.  Sand automata as cellular automata , 2009, Theor. Comput. Sci..

[15]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[16]  Pino Caballero-Gil,et al.  Application of Linear Hybrid Cellular Automata to Stream Ciphers , 2007, EUROCAST.

[17]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[18]  Enrico Formenti,et al.  Multidimensional cellular automata: closing property, quasi-expansivity, and (un)decidability issues , 2014, Theor. Comput. Sci..

[19]  Sukanta Das,et al.  Non-uniform Cellular Automata , 2014, Theor. Comput. Sci..

[20]  Ludwig Staiger,et al.  Finite Acceptance of Infinite Words , 1997, Theor. Comput. Sci..

[21]  Lawrence H. Landweber,et al.  Decision problems forω-automata , 1969, Mathematical systems theory.

[22]  Luigi Acerbi,et al.  Conservation of some dynamical properties for operations on cellular automata , 2009, Theor. Comput. Sci..

[23]  Dominique Perrin,et al.  Finite and infinite words , 2002 .