Conservative Local Discontinuous Galerkin Method for Compressible Miscible Displacements in Porous Media

In Guo et al. (Appl Math Comput 259:88–105, 2015), a nonconservative local discontinuous Galerkin (LDG) method for both flow and transport equations was introduced for the one-dimensional coupled system of compressible miscible displacement problem. In this paper, we will continue our effort and develop a conservative LDG method for the problem in two space dimensions. Optimal error estimates in $$L^{\infty }(0, T; L^{2})$$L∞(0,T;L2) norm for not only the solution itself but also the auxiliary variables will be derived. The main difficulty is how to treat the inter-element discontinuities of two independent solution variables (one from the flow equation and the other from the transport equation) at cell interfaces. Numerical experiments will be given to confirm the accuracy and efficiency of the scheme.

[1]  Sören Bartels,et al.  Discontinuous Galerkin Finite Element Convergence for Incompressible Miscible Displacement Problems of Low Regularity , 2009, SIAM J. Numer. Anal..

[2]  T. F. Russell,et al.  Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics , 1984 .

[3]  Liangyue Ji,et al.  Optimal error estimates of the local discontinuous galerkin method for willmore flow of graphs on cartesian meshes , 2011 .

[4]  Richard E. Ewing,et al.  The approximation of the pressure by a mixed method in the simulation of miscible displacement , 1983 .

[5]  Qinghua Zhang,et al.  Error analysis of the semi-discrete local discontinuous Galerkin method for compressible miscible displacement problem in porous media , 2015, Appl. Math. Comput..

[6]  Richard E. Ewing,et al.  A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media , 1983 .

[7]  Mingrong Cui,et al.  Analysis of a semidiscrete discontinuous Galerkin scheme for compressible miscible displacement problem , 2008 .

[8]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[9]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[10]  G. R. Shubin,et al.  An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions , 1988 .

[11]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[12]  Haijin Wang,et al.  Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems , 2016, Appl. Math. Comput..

[13]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[14]  Qiang Zhang,et al.  Local discontinuous Galerkin methods with implicit-explicit time-marching for multi-dimensional convection-diffusion problems , 2016 .

[15]  B. Rivière,et al.  A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .

[16]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[17]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[18]  I. M. Gelfand,et al.  Some questions of analysis and differential equations , 1987 .

[19]  M. Wheeler,et al.  Discontinuous Galerkin methods for coupled flow and reactive transport problems , 2005 .

[20]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[21]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Kuramoto-Sivashinsky equations and the Ito-type coupled KdV equations , 2006 .

[22]  Chi-Wang,et al.  ANALYSIS OF SHARP SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS , 2015 .

[23]  Hongxing Rui,et al.  A new MCC-MFE method for compressible miscible displacement in porous media , 2016, J. Comput. Appl. Math..

[24]  Danping Yang,et al.  A new MMOCAA-MFE method for compressible miscible displacement in porous media , 2014 .

[25]  Chi-Wang Shu,et al.  A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..

[26]  Jean E. Roberts,et al.  Numerical methods for a model for compressible miscible displacement in porous media , 1983 .

[27]  Haijin Wang,et al.  Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-Explicit Time-Marching for Advection-Diffusion Problems , 2015, SIAM J. Numer. Anal..

[28]  Fan Yu,et al.  Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media , 2017, J. Sci. Comput..

[29]  D. H. Sattinger,et al.  Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients , 1968 .