$\beta$ -Ga2O3 MOSFETs for Radio Frequency Operation

We demonstrate a <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub> MOSFET with record-high transconductance (<inline-formula> <tex-math notation="LaTeX">${g}_{m}$ </tex-math></inline-formula>) of 21 mS/mm and extrinsic cutoff frequency (<inline-formula> <tex-math notation="LaTeX">${f}_{T}$ </tex-math></inline-formula>) and maximum oscillating frequency (<inline-formula> <tex-math notation="LaTeX">${f}_{\max }$ </tex-math></inline-formula>) of 3.3 and 12.9 GHz, respectively, enabled by implementing a new highly doped ohmic cap layer with a sub-micron gate recess process. RF performance was further verified by CW Class-A power measurements with passive source and load tuning at 800 MHz, resulting in <inline-formula> <tex-math notation="LaTeX">${P}_{{OUT}}$ </tex-math></inline-formula>, power gain, and power-added efficiency of 0.23 W/mm, 5.1 dB, and 6.3%, respectively. These preliminary results indicate potential for monolithic or heterogeneous integration of power switch and RF devices using <inline-formula> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula>-Ga<sub>2</sub>O<sub>3</sub>.

[1]  B. J. Baliga,et al.  Semiconductors for high‐voltage, vertical channel field‐effect transistors , 1982 .

[2]  Akito Kuramata,et al.  Si-Ion Implantation Doping in β-Ga2O3 and Its Application to Fabrication of Low-Resistance Ohmic Contacts , 2013 .

[3]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[4]  Zbigniew Galazka,et al.  3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped $\beta $ -Ga2O3 MOSFETs , 2016, IEEE Electron Device Letters.

[5]  Reinhard Uecker,et al.  On the bulk β-Ga2O3 single crystals grown by the Czochralski method , 2014 .

[6]  Hong Zhou,et al.  High-Performance Depletion/Enhancement-ode $\beta$ -Ga2O3 on Insulator (GOOI) Field-Effect Transistors With Record Drain Currents of 600/450 mA/mm , 2016, IEEE Electron Device Letters.

[7]  J. Speck,et al.  Composition determination of β-(AlxGa1−x)2O3 layers coherently grown on (010) β-Ga2O3 substrates by high-resolution X-ray diffraction , 2016 .

[8]  Yuta Koga,et al.  High-mobility β-Ga2O3() single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact , 2015 .

[9]  Akito Kuramata,et al.  Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V , 2016, IEEE Electron Device Letters.

[10]  J. S. Wallace,et al.  Ga2O3 MOSFETs Using Spin-On-Glass Source/Drain Doping Technology , 2017, IEEE Electron Device Letters.

[11]  Q. Guo,et al.  Electrical properties of Si doped Ga2O3 films grown by pulsed laser deposition , 2015, Journal of Materials Science: Materials in Electronics.

[12]  Reinhard Uecker,et al.  Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method , 2011 .

[13]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[14]  D. Jena,et al.  Intrinsic electron mobility limits in β-Ga2O3 , 2016, 1610.04198.

[15]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[16]  S. Yamakoshi,et al.  Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface , 2017 .

[17]  Kevin D. Leedy,et al.  Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage , 2016 .

[18]  Andreas Fiedler,et al.  Editors' Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by MOVPE on (010)-Oriented Substrates , 2017 .

[19]  M. Baldini,et al.  Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model , 2016 .

[20]  Akito Kuramata,et al.  Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics , 2013 .