Pseudo-marginal Bayesian inference for Gaussian process latent variable models

A Bayesian inference framework for supervised Gaussian process latent variable models is introduced. The framework overcomes the high correlations between latent variables and hyperparameters by collapsing the statistical model through approximate integration of the latent variables. Using an unbiased pseudo estimate for the marginal likelihood, the exact hyperparameter posterior can then be explored using collapsed Gibbs sampling and, conditional on these samples, the exact latent posterior can be explored through elliptical slice sampling. The framework is tested on both simulated and real examples. When compared with the standard approach based on variational inference, this approach leads to significant improvements in the predictive accuracy and quantification of uncertainty, as well as a deeper insight into the challenges of performing inference in this class of models.

[1]  Marc Peter Deisenroth,et al.  Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.

[2]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[3]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[4]  Charles M. Bishop Variational principal components , 1999 .

[5]  Christopher C. Drovandi,et al.  Accelerating pseudo-marginal MCMC using Gaussian processes , 2018, Comput. Stat. Data Anal..

[6]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[7]  T. Maiti,et al.  Regional fertility data analysis: A small area Bayesian approach , 2013 .

[8]  Christopher K. I. Williams,et al.  Kick-starting GPLVM optimization via a connection to metric MDS , 2010, NIPS 2010.

[9]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[10]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[11]  Juan José Murillo-Fuentes,et al.  Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo , 2018, NeurIPS.

[12]  Ryan P. Adams,et al.  Elliptical slice sampling , 2009, AISTATS.

[13]  Maurizio Filippone,et al.  Pseudo-Marginal Bayesian Inference for Gaussian Processes , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[15]  Neil D. Lawrence,et al.  Efficient Sampling for Gaussian Process Inference using Control Variables , 2008, NIPS.

[16]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[17]  Andreas C. Damianou,et al.  Deep Gaussian processes and variational propagation of uncertainty , 2015 .

[18]  James Hensman,et al.  MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.

[19]  Neil D. Lawrence,et al.  Variational Gaussian Process Dynamical Systems , 2011, NIPS.

[20]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[21]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[22]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .