Pseudo-marginal Bayesian inference for Gaussian process latent variable models
暂无分享,去创建一个
[1] Marc Peter Deisenroth,et al. Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.
[2] Neil D. Lawrence,et al. Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.
[3] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[4] Charles M. Bishop. Variational principal components , 1999 .
[5] Christopher C. Drovandi,et al. Accelerating pseudo-marginal MCMC using Gaussian processes , 2018, Comput. Stat. Data Anal..
[6] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[7] T. Maiti,et al. Regional fertility data analysis: A small area Bayesian approach , 2013 .
[8] Christopher K. I. Williams,et al. Kick-starting GPLVM optimization via a connection to metric MDS , 2010, NIPS 2010.
[9] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[10] Neil D. Lawrence,et al. Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..
[11] Juan José Murillo-Fuentes,et al. Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo , 2018, NeurIPS.
[12] Ryan P. Adams,et al. Elliptical slice sampling , 2009, AISTATS.
[13] Maurizio Filippone,et al. Pseudo-Marginal Bayesian Inference for Gaussian Processes , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[14] Michael I. Jordan,et al. An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.
[15] Neil D. Lawrence,et al. Efficient Sampling for Gaussian Process Inference using Control Variables , 2008, NIPS.
[16] Neil D. Lawrence,et al. Deep Gaussian Processes , 2012, AISTATS.
[17] Andreas C. Damianou,et al. Deep Gaussian processes and variational propagation of uncertainty , 2015 .
[18] James Hensman,et al. MCMC for Variationally Sparse Gaussian Processes , 2015, NIPS.
[19] Neil D. Lawrence,et al. Variational Gaussian Process Dynamical Systems , 2011, NIPS.
[20] A. Doucet,et al. Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.
[21] M. Beaumont. Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.
[22] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .