The importance of cross-slip in high-rate deformation

We apply three-dimensional dislocation dynamics simulations to study the dynamic response of materials at high strain rates (104 to 106 s−1) with the focus on investigating the role of cross-slip in deformation. By comparing simulations with and without cross-slip, we find that cross-slip plays a role in the generation and annihilation of dislocations, leading to different dislocation velocities, density evolution and macroscale plastic response.

[1]  J. Bonneville,et al.  Cross-slipping process and the stress-orientation dependence in pure copper , 1979 .

[2]  H. Zbib,et al.  Forces on high velocity dislocations , 1998 .

[3]  I. Beyerlein,et al.  Plastic anisotropy in fcc single crystals in high rate deformation , 2009 .

[4]  Hannes Jónsson,et al.  Atomistic Determination of Cross-Slip Pathway and Energetics , 1997 .

[5]  M. Duesbery Dislocation motion, constriction and cross-slip in fcc metals , 1998 .

[6]  U. F. Kocks,et al.  A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable , 1988 .

[7]  V. Bulatov,et al.  Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions , 2000 .

[8]  M. Ashby,et al.  THE MOTION OF A DISLOCATION, ACTED ON BY A VISCOUS DRAG, THROUGH AN ARRAY OF DISCRETE OBSTACLES. , 1971 .

[9]  F. I. Grace,et al.  Influence of stacking fault energy on dislocation configurations in shock-deformed metals , 1970 .

[10]  Zhiqiang Wang,et al.  A parallel algorithm for 3D dislocation dynamics , 2006, J. Comput. Phys..

[11]  Ladislas P. Kubin,et al.  Dislocation Microstructures and Plastic Flow: A 3D Simulation , 1992 .

[12]  Hussein M. Zbib,et al.  3D dislocation dynamics: stress–strain behavior and hardening mechanisms in fcc and bcc metals , 2000 .

[13]  I. Beyerlein,et al.  Dislocation motion in high strain-rate deformation , 2007 .

[14]  István Groma,et al.  Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications , 1998 .

[15]  Amit Misra,et al.  Dislocation motion in thin Cu foils: a comparison between computer simulations and experiment , 2004 .

[16]  Ladislas P. Kubin,et al.  Mesoscopic simulations of dislocations and plasticity , 1997 .

[17]  B. Kear,et al.  The dependence of the width of a dissociated dislocation on dislocation velocity , 1968 .

[18]  G. Saada Cross-slip and work hardening of f.c.c. crystals , 1991 .

[19]  Nasr M. Ghoniem,et al.  Fast-sum method for the elastic field of three-dimensional dislocation ensembles , 1999 .

[20]  F. Nabarro Extended dislocations and the schmid law of resolved shear stress , 1966 .

[21]  Nasr M. Ghoniem,et al.  Affine covariant-contravariant vector forms for the elastic field of parametric dislocations in isotropic crystals , 2002 .

[22]  J. Gilman Contraction of extended dislocations at high speeds , 2001 .