Can quantum mechanics be an emergent phenomenon

We raise the issue whether conventional quantum mechanics, which is not a hidden variable theory in the usual Jauch-Piron's sense, might nevertheless be a hidden variable theory in the sense recently conjectured by G. 't Hooft in his pre-quantization scheme. We find that quantum mechanics might indeed have a fully deterministic underpinning by showing that Born's rule naturally emerges (i.e., it is not postulated) when 't Hooft's Hamiltonian for be-ables is combined with Koopmann–von Neumann operatorial formulation of classical physics.

[1]  G. Hooft Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.

[2]  H. Kleinert,et al.  Quantum behavior of deterministic systems with information loss: Path integral approach , 2005 .

[3]  Reuter,et al.  Hidden BRS invariance in classical mechanics. II. , 1989, Physical review. D, Particles and fields.

[4]  P. Jizba,et al.  Quantization, group contraction and zero point energy , 2002, quant-ph/0208012.

[5]  Dissipation and quantization , 2000, hep-th/0007138.

[6]  H. Elze Decoherence and Entropy in Complex Systems , 2004 .

[7]  Lee Smolin Could quantum mechanics be an approximation to another theory , 2006 .

[8]  H. Kleinert,et al.  Path-integral approach to 't Hooft's derivation of quantum physics from classical physics , 2004, quant-ph/0409021.

[9]  R. Jackiw,et al.  Hamiltonian reduction of unconstrained and constrained systems. , 1988, Physical review letters.

[10]  Determinism and a supersymmetric classical model of quantum fields , 2005, hep-th/0503069.

[11]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  C. Ross Found , 1869, The Dental register.

[14]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[15]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[16]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[17]  Gerard 't Hooft Determinism in Free Bosons , 2001 .

[18]  G. Hooft Quantization of point particles in (2+1)-dimensional gravity and spacetime discreteness , 1996, gr-qc/9601014.

[19]  H. Elze The Attractor and the Quantum States , 2008, 0806.3408.

[20]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[21]  P. Jizba,et al.  Quantum Limit of Deterministic Theories , 2003 .

[22]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[24]  Deterministic models of quantum fields , 2005, gr-qc/0512016.

[25]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[26]  Peter G. Bergmann,et al.  Non-Linear Field Theories , 1949 .

[27]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[28]  P. Jizba,et al.  Unde venis quantum mechanics , 2007 .

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  S.W.Hawking The Nature of Space and Time , 1994 .

[33]  E. Gozzi Hidden BRS invariance in classical mechanics , 1988 .

[34]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Neumann Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .

[36]  Petr Jizba,et al.  Quantum mechanics of the damped harmonic oscillator , 2002 .

[37]  F. Scardigli The Titius − Bode law and a quantum-like description of the planetary systems , 2022 .

[38]  John von Neumann,et al.  Zusatze Zur Arbeit ,,Zur Operatorenmethode... , 1932 .

[39]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[40]  D. Mauro On Koopman-von Neumann Waves II , 2001 .

[41]  John Preskill,et al.  THE NATURE OF SPACE AND TIME , 1994 .

[42]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[43]  Gerard 't Hooft,et al.  Equivalence relations between deterministic and quantum mechanical systems , 1988 .

[44]  G. ’t Hooft QUANTIZATION OF POINT PARTICLES IN 2+1 DIMENSIONAL GRAVITY AND SPACE-TIME DISCRETENESS , 1996 .

[45]  K. Sundermeyer Constrained Dynamics: With Applications to Yang-Mills Theory, General Relativity, Classical Spin, Dual String Model , 1982 .