Can quantum mechanics be an emergent phenomenon
暂无分享,去创建一个
[1] G. Hooft. Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.
[2] H. Kleinert,et al. Quantum behavior of deterministic systems with information loss: Path integral approach , 2005 .
[3] Reuter,et al. Hidden BRS invariance in classical mechanics. II. , 1989, Physical review. D, Particles and fields.
[4] P. Jizba,et al. Quantization, group contraction and zero point energy , 2002, quant-ph/0208012.
[5] Dissipation and quantization , 2000, hep-th/0007138.
[6] H. Elze. Decoherence and Entropy in Complex Systems , 2004 .
[7] Lee Smolin. Could quantum mechanics be an approximation to another theory , 2006 .
[8] H. Kleinert,et al. Path-integral approach to 't Hooft's derivation of quantum physics from classical physics , 2004, quant-ph/0409021.
[9] R. Jackiw,et al. Hamiltonian reduction of unconstrained and constrained systems. , 1988, Physical review letters.
[10] Determinism and a supersymmetric classical model of quantum fields , 2005, hep-th/0503069.
[11] J. Bell,et al. Speakable and Unspeakable in Quatum Mechanics , 1988 .
[12] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[13] C. Ross. Found , 1869, The Dental register.
[14] A. Shimony,et al. Bell’s theorem without inequalities , 1990 .
[15] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[16] C. Monroe,et al. Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.
[17] Gerard 't Hooft. Determinism in Free Bosons , 2001 .
[18] G. Hooft. Quantization of point particles in (2+1)-dimensional gravity and spacetime discreteness , 1996, gr-qc/9601014.
[19] H. Elze. The Attractor and the Quantum States , 2008, 0806.3408.
[20] A. Zeilinger,et al. Speakable and Unspeakable in Quantum Mechanics , 1989 .
[21] P. Jizba,et al. Quantum Limit of Deterministic Theories , 2003 .
[22] Paul Adrien Maurice Dirac,et al. Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[23] N. Gisin,et al. Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.
[24] Deterministic models of quantum fields , 2005, gr-qc/0512016.
[25] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[26] Peter G. Bergmann,et al. Non-Linear Field Theories , 1949 .
[27] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .
[28] P. Jizba,et al. Unde venis quantum mechanics , 2007 .
[29] Ericka Stricklin-Parker,et al. Ann , 2005 .
[30] G. Roger,et al. Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .
[31] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[32] S.W.Hawking. The Nature of Space and Time , 1994 .
[33] E. Gozzi. Hidden BRS invariance in classical mechanics , 1988 .
[34] B. O. Koopman,et al. Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[35] J. Neumann. Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .
[36] Petr Jizba,et al. Quantum mechanics of the damped harmonic oscillator , 2002 .
[37] F. Scardigli. The Titius − Bode law and a quantum-like description of the planetary systems , 2022 .
[38] John von Neumann,et al. Zusatze Zur Arbeit ,,Zur Operatorenmethode... , 1932 .
[39] R. Feynman,et al. The Theory of a general quantum system interacting with a linear dissipative system , 1963 .
[40] D. Mauro. On Koopman-von Neumann Waves II , 2001 .
[41] John Preskill,et al. THE NATURE OF SPACE AND TIME , 1994 .
[42] P. Grangier,et al. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .
[43] Gerard 't Hooft,et al. Equivalence relations between deterministic and quantum mechanical systems , 1988 .
[44] G. ’t Hooft. QUANTIZATION OF POINT PARTICLES IN 2+1 DIMENSIONAL GRAVITY AND SPACE-TIME DISCRETENESS , 1996 .
[45] K. Sundermeyer. Constrained Dynamics: With Applications to Yang-Mills Theory, General Relativity, Classical Spin, Dual String Model , 1982 .