High Resolution Structure, Stability, and Synaptotagmin Binding of a Truncated Neuronal SNARE Complex*

The structure of a truncated SNARE complex has been solved to 1.4-Å resolution revealing a stabilizing salt bridge, sites of hydration, and conformational variability of the ionic central layer that were not observed in a previously published structure at 2.4-Å resolution (Sutton, R. B., Fasshauer, D., Jahn, R., and Brunger, A. T. (1998) Nature 395, 347–353). The truncated complex lacks residues involved in phospholipid binding and denatures at a lower temperature than longer complexes as assessed by SDS and circular dichroism thermal melts. The truncated SNARE complex is monomeric, and it retains binding to synaptotagmin I.

[1]  A. Brunger,et al.  High Resolution Structure of a Truncated Neuronal SNARE Complex , 2002 .

[2]  Konosuke Kumakura,et al.  Calmodulin and lipid binding to synaptobrevin regulates calcium‐dependent exocytosis , 2002, The EMBO journal.

[3]  W. Weissenhorn,et al.  X-ray Structure of a Neuronal Complexin-SNARE Complex from Squid* , 2002, The Journal of Biological Chemistry.

[4]  R. Scheller,et al.  The ionic layer is required for efficient dissociation of the SNARE complex by α-SNAP and NSF , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Scheller,et al.  Fusion Without SNAREs? , 2001, Science.

[6]  Sejal M. Patel,et al.  Calcium Regulation of Exocytosis in PC12 Cells* , 2001, The Journal of Biological Chemistry.

[7]  R. Scheller,et al.  Three SNARE complexes cooperate to mediate membrane fusion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  T. Südhof,et al.  The C2B domain of synaptotagmin I is a Ca2+-binding module. , 2001, Biochemistry.

[9]  R. Jahn,et al.  Homo- and Heterooligomeric SNARE Complexes Studied by Site-directed Spin Labeling* , 2001, The Journal of Biological Chemistry.

[10]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[11]  W. Antonin,et al.  The R-SNARE endobrevin/VAMP-8 mediates homotypic fusion of early endosomes and late endosomes. , 2000, Molecular biology of the cell.

[12]  C. Lévêque,et al.  Ca2+-dependent regulation of synaptic SNARE complex assembly via a calmodulin- and phospholipid-binding domain of synaptobrevin. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Neher,et al.  Exocytotic mechanism studied by truncated and zero layer mutants of the C‐terminus of SNAP‐25 , 2000, The EMBO journal.

[14]  J. Cabaniols,et al.  Targeting of SNAP-25 to Membranes Is Mediated by Its Association with the Target SNARE Syntaxin* , 2000, The Journal of Biological Chemistry.

[15]  A. Brunger,et al.  Crystal Structure of the Cytosolic C2a-C2b Domains of Synaptotagmin III , 1999, The Journal of cell biology.

[16]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[18]  Josep Ubach,et al.  Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A , 1998, Cell.

[19]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[20]  L. Foster,et al.  Binary interactions of the SNARE proteins syntaxin-4, SNAP23, and VAMP-2 and their regulation by phosphorylation. , 1998, Biochemistry.

[21]  A. T. Brunger,et al.  Identification of a minimal core of the synaptic SNARE complex sufficient for reversible assembly and disassembly. , 1998, Biochemistry.

[22]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[23]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[24]  G. Kleywegt Use of non-crystallographic symmetry in protein structure refinement. , 1996, Acta crystallographica. Section D, Biological crystallography.

[25]  Axel T. Brunger,et al.  The direct rotation function: rotational Patterson correlation search applied to molecular replacement , 1995 .

[26]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[27]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[28]  Reinhard Jahn,et al.  Vesicle fusion from yeast to man , 1994, Nature.

[29]  R. Scheller,et al.  Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. , 1994, Science.

[30]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[31]  R. Scheller,et al.  The syntaxin family of vesicular transport receptors , 1993, Cell.

[32]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[33]  P. Wyatt Light scattering and the absolute characterization of macromolecules , 1993 .

[34]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[35]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[36]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[37]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[38]  F. Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[39]  P. De Camilli,et al.  Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. , 1989, The EMBO journal.

[40]  R. Scheller,et al.  Molecular biology of synaptic vesicle-associated proteins , 1988, Trends in Neurosciences.

[41]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[42]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[43]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.