Cluster Algebras and Scattering Diagrams, Part III. Cluster Scattering Diagrams
暂无分享,去创建一个
[1] Travis Mandel,et al. Strong positivity for quantum theta bases of quantum cluster algebras , 2021, Inventiones mathematicae.
[2] T. Bridgeland. Scattering diagrams, Hall algebras and stability conditions , 2016, Algebraic Geometry.
[3] W. Magnus. On the exponential solution of differential equations for a linear operator , 1954 .
[4] M. Gross. Tropical Geometry And Mirror Symmetry , 2011 .
[5] Leonard Lewin,et al. Polylogarithms and Associated Functions , 1981 .
[6] M. Kontsevich,et al. Homological mirror symmetry and tropical geometry , 2014 .
[7] M. Gross,et al. Birational geometry of cluster algebras , 2013, 1309.2573.
[8] M. Gross,et al. The tropical vertex , 2009, 0902.0779.
[9] Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.
[10] Paul Hacking,et al. Canonical bases for cluster algebras , 2014, 1411.1394.
[11] M. Reineke. Poisson automorphisms and quiver moduli , 2008, Journal of the Institute of Mathematics of Jussieu.
[12] Nathan Reading. A combinatorial approach to scattering diagrams , 2018, 1806.05094.
[13] Max Neunhöffer,et al. LIE Λ-ALGEBRAS , 2009 .
[14] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[15] M. Kontsevich,et al. Affine Structures and Non-Archimedean Analytic Spaces , 2004, math/0406564.