Tetrahedral adaptive mesh refinement for two‐phase flows using conservative level‐set method

In this article, we describe a parallel adaptive mesh refinement strategy for two‐phase flows using tetrahedral meshes. The proposed methodology consists of combining a conservative level‐set method with tetrahedral adaptive meshes within a finite volume framework. Our adaptive algorithm applies a cell‐based refinement technique and adapts the mesh according to physics‐based refinement criteria defined by the two‐phase application. The new adapted tetrahedral mesh is obtained from mesh manipulations of an input mesh: operations of refinement and coarsening until a maximum level of refinement is achieved. For the refinement method of tetrahedral elements, geometrical characteristics are taking into consideration to preserve the shape quality of the subdivided elements. The present method is used for the simulation of two‐phase flows, with surface tension, to show the capability and accuracy of 3D adapted tetrahedral grids to bring new numerical research in this context. Finally, the applicability of this approach is shown in the study of the gravity‐driven motion of a single bubble/droplet in a quiescent viscous liquid on regular and complex domains.

[1]  Harvey D. Mendelson The prediction of bubble terminal velocities from wave theory , 1967 .

[2]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[3]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[4]  H. C. Simpson Bubbles, drops and particles , 1980 .

[5]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[6]  Martin E. Weber,et al.  Bubbles in viscous liquids: shapes, wakes and velocities , 1981, Journal of Fluid Mechanics.

[7]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[8]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[9]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[10]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[11]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[12]  P. Gaskell,et al.  Curvature‐compensated convective transport: SMART, A new boundedness‐ preserving transport algorithm , 1988 .

[13]  H. V. D. Vorst,et al.  Conjugate gradient type methods and preconditioning , 1988 .

[14]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[15]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[16]  U. Ozen,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[17]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[18]  Philip L. Roe,et al.  Adaptive-mesh algorithms for computational fluid dynamics , 1993 .

[19]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[20]  Barry Joe,et al.  Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision , 1996, Math. Comput..

[21]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[22]  George Karypis,et al.  Parmetis parallel graph partitioning and sparse matrix ordering library , 1997 .

[23]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[24]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[25]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[26]  R. Krishna,et al.  Wall effects on the rise of single gas bubbles in liquids , 1999 .

[27]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[28]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[29]  M. Syamlal,et al.  The effect of numerical diffusion on simulation of isolated bubbles in a gas-solid fluidized bed , 2001 .

[30]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[31]  Robert Michael Kirby,et al.  Parallel Scientific Computing in C++ and MPI - A Seamless Approach to Parallel Algorithms and their Implementation , 2003 .

[32]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[33]  Xiaoming Zheng,et al.  Adaptive unstructured volume remeshing - I: The method , 2005 .

[34]  Ng Niels Deen,et al.  Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method , 2005 .

[35]  V. Cristini,et al.  Adaptive unstructured volume remeshing - II: Application to two- and three-dimensional level-set simulations of multiphase flow , 2005 .

[36]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[37]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[38]  Thomas S. Lund,et al.  Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible flow , 2006, J. Comput. Phys..

[39]  T. L. Popiolek,et al.  Numerical simulation of incompressible flows using adaptive unstructured meshes and the pseudo-compressibility hypothesis , 2006, Adv. Eng. Softw..

[40]  D. Eckmann,et al.  Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Gunilla Kreiss,et al.  A conservative level set method for two phase flow II , 2005, J. Comput. Phys..

[42]  I. Nikolos,et al.  An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography , 2009 .

[43]  F. Stern,et al.  A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves , 2009 .

[44]  W. Q. Tao,et al.  A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows , 2010 .

[45]  Riccardo Rossi,et al.  Parallel adaptive mesh refinement for incompressible flow problems , 2013 .

[46]  A. Tomiyama,et al.  Terminal velocities of clean and fully-contaminated drops in vertical pipes , 2013 .

[47]  Niclas Jansson,et al.  Unicorn Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry , 2013 .

[48]  J. Percival,et al.  Adaptive unstructured mesh modelling of multiphase flows , 2014 .

[49]  J. Castro,et al.  A finite-volume/level-set method for simulating two-phase flows on unstructured grids , 2014 .

[50]  A. Oliva,et al.  Level-set simulations of buoyancy-driven motion of single and multiple bubbles , 2015 .

[51]  A. Oliva,et al.  Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows , 2015 .

[52]  A. Oliva,et al.  A multiple marker level-set method for simulation of deformable fluid particles , 2015 .

[53]  Oriol Lehmkuhl,et al.  A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes , 2016 .

[54]  J. Percival,et al.  A balanced-force control volume finite element method for interfacial flows with surface tension using adaptive anisotropic unstructured meshes , 2016 .

[55]  A. Oliva,et al.  A level-set model for thermocapillary motion of deformable fluid particles , 2016 .

[56]  Adrien Loseille,et al.  Unstructured Grid Adaptation: Status, Potential Impacts, and Recommended Investments Toward CFD Vision 2030 , 2016 .

[57]  A. Tomiyama,et al.  Shapes of ellipsoidal bubbles in infinite stagnant liquids , 2016 .

[58]  Long Cu Ngo,et al.  A multi‐level adaptive mesh refinement method for level set simulations of multiphase flow on unstructured meshes , 2017 .

[59]  Nathaniel R. Morgan,et al.  3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement , 2017, J. Comput. Phys..

[60]  Assensi Oliva,et al.  DNS of the wall effect on the motion of bubble swarms , 2017, ICCS.

[61]  N. Balcázar,et al.  Numerical study of Taylor bubbles rising in a stagnant liquid using a level-set/moving-mesh method , 2017 .

[62]  Jitian Han,et al.  Bubbles in curved tube flows – An experimental study , 2017 .

[63]  A. Oliva,et al.  A low-dissipation convection scheme for the stable discretization of turbulent interfacial flow , 2017 .

[64]  Ionut Danaila,et al.  An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows , 2018, J. Comput. Phys..

[65]  Oscar Antepara,et al.  Numerical study of rising bubbles with path instability using conservative level-set and adaptive mesh refinement , 2019, Computers & Fluids.

[66]  A. Oliva,et al.  A level-set model for mass transfer in bubbly flows , 2019, International Journal of Heat and Mass Transfer.

[67]  Andrew Giuliani,et al.  Adaptive mesh refinement on graphics processing units for applications in gas dynamics , 2019, J. Comput. Phys..

[68]  Joaquim Rigola,et al.  DNS of Mass Transfer from Bubbles Rising in a Vertical Channel , 2019, ICCS.

[69]  Oriol Lehmkuhl,et al.  An immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna , 2019, Applied Thermal Engineering.

[70]  J. R. Serrano,et al.  A numerical study of liquid atomization regimes by means of conservative level-set simulations , 2019, Computers & Fluids.

[71]  N. Balcázar,et al.  A numerical approach for non-Newtonian two-phase flows using a conservative level-set method , 2020 .