Operator-adapted finite element wavelets : theory and applications to a posteriori error estimation and adaptive computational modeling
暂无分享,去创建一个
[1] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[2] Burak Aksoylu,et al. AN ODYSSEY INTO LOCAL REFINEMENT AND MULTILEVEL PRECONDITIONING II: STABILIZING HIERARCHICAL BASIS METHODS , 2005 .
[3] I. Babuska,et al. Hierarchical Finite Element Approaches Error Estimates and Adaptive Refinement , 1981 .
[4] Gilbert Strang,et al. Finite element multiwavelets , 1994, Proceedings of IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis.
[5] Harry Yserentant,et al. On the multi-level splitting of finite element spaces , 1986 .
[6] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[7] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[8] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[9] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[10] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .
[11] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[12] I. Babuska,et al. Finite Element Analysis , 2021 .
[13] Kevin Amaratunga,et al. Wavelet-Galerkin solution of boundary value problems , 1997 .
[14] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[15] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[16] Tony DeRose,et al. Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.
[17] I. Fried,et al. THE l2 AND l∞ CONDITION NUMBERS OF THE FINITE ELEMENT STIFFNESS AND MASS MATRICES, AND THE POINTWISE CONVERGENCE OF THE METHOD , 1973 .
[18] K. Bathe. Finite Element Procedures , 1995 .
[19] Albert Cohen,et al. Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..
[20] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[21] A Multiscale Wavelet Solver with O(n) Complexity , 1995 .
[22] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets II: Implementation and Numerical Results , 1998, SIAM J. Sci. Comput..
[23] D. Hardin,et al. Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .
[24] Harry Yserentant,et al. Hierarchical bases , 1992 .
[25] Clive L. Dym,et al. Energy and Finite Element Methods In Structural Mechanics : SI Units , 2017 .
[26] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[27] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[28] R. Melosh. BASIS FOR DERIVATION OF MATRICES FOR THE DIRECT STIFFNESS METHOD , 1963 .
[29] William S. Slaughter. The Linearized Theory of Elasticity , 2001 .
[30] Thomas Grätsch,et al. Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .
[31] Truong Q. Nguyen,et al. Wavelets and filter banks , 1996 .
[32] R. Bank,et al. The hierarchical basis multigrid method , 1988 .
[33] John R. Williams,et al. Wavelet–Galerkin solutions for one‐dimensional partial differential equations , 1994 .
[34] Kevin Amaratunga,et al. Generalized hierarchical bases: a Wavelet‐Ritz‐Galerkin framework for Lagrangian FEM , 2005 .
[35] K. Bathe,et al. Influence functions and goal‐oriented error estimation for finite element analysis of shell structures , 2005 .
[36] Randolph E. Bank,et al. PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.
[37] Raghunathan Sudarshan,et al. A Parallel Hierarchical Solver for the Poisson Equation , 2003 .
[38] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[39] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[40] Kevin Amaratunga,et al. Spatially Adapted Multiwavelets and Sparse Representation of Integral Equations on General Geometries , 2002, SIAM J. Sci. Comput..
[41] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[42] Michael J. Holst,et al. Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..
[43] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[44] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[45] Ronald R. Coifman,et al. Wavelet-Like Bases for the Fast Solution of Second-Kind Integral Equations , 1993, SIAM J. Sci. Comput..
[46] Gene H. Golub,et al. Matrix computations , 1983 .
[47] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[48] P. Mikusinski,et al. Introduction to Hilbert spaces with applications , 1990 .