Regional Mineral Mapping By Extending Hyperspectral Signatures Using Multispectral Data

Hyperspectral imaging (HSI) data in the 0.4 -2.5 micrometer (VNIR/SWIR) spectral range allow direct identification of minerals using their fully resolved spectral signatures, however, spatial coverage is limited. Multispectral Imaging data (MSI) (e.g. data from the Advanced Spaceborne Emission and Reflection Radiometer, ASTER) are spectrally undersampled and may not allow unique identification, but they do provide synoptic spatial coverage. Combining the two data types by modeling hyperspectral signatures to ASTER band passes allows extending HSI mapping results to regional scales and leads to improved mineral mapping over larger areas.

[1]  Akira Iwasaki,et al.  Improvement of ASTER/SWIR crosstalk correction , 2004, SPIE Remote Sensing.

[2]  Vincent J. Realmuto,et al.  The advanced spaceborne thermal emission and reflectance radiometer (Aster) , 1991, Int. J. Imaging Syst. Technol..

[3]  J. Boardman,et al.  Leveraging the High Dimensionality of AVIRIS Data for improved Sub-Pixel Target i Unmixing and Rejection of False Positives : Mixture Tuned Matched Filtering , 1998 .

[4]  F. Sabins Remote Sensing: Principles and Interpretation , 1987 .

[5]  A. B. Lefkoff,et al.  Expert system-based mineral mapping in northern death valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1993 .

[6]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[7]  Alexander F. H. Goetz,et al.  Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images , 1974 .

[8]  Fred A. Kruse,et al.  Knowledge‐based geologic mapping with imaging spectrometers , 1994 .

[9]  Suzanne D. Golding,et al.  Economic Geology and the Bulletin of the Society of Economic Geologists , 2006 .

[10]  Fred A. Kruse Combined SWIR and LWIR mineral mapping using MASTER/ASTER , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[11]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[12]  Hiroyuki Fujisada,et al.  Design and performance of ASTER instrument , 1995, Remote Sensing.

[13]  A. F. H. Goetz,et al.  Mineralogical Mapping in the Cuprite Mining District, Nevada , 1985 .

[14]  F. Kruse,et al.  District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina , 2006 .

[15]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[16]  S. Hook,et al.  The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .

[17]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[19]  Jessica A. Faust,et al.  Aviris Radiometric Laboratory Calibration, Inflight Validation and a Focused Sensitivity Analysis in 1998 , 2000 .

[20]  Gary L. Raines,et al.  Mineral resources and mineral resource potential of the Little Sand Spring Wilderness Study Area, Inyo County, California , 1984 .

[21]  John B. Adams,et al.  Detectability of minerals on desert alluvial fans using reflectance spectra , 1987 .

[22]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[23]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[24]  S. J. Sutley,et al.  Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada , 1992 .

[25]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Jeff Dozier,et al.  Retrieval of Surface Snow Grainsize and Melt Water from AVIRIS Spectra , 1996 .

[27]  J. W. Boardman,et al.  FIFTEEN YEARS OF HYPERSPECTRAL DATA: NORTHERN GRAPEVINE MOUNTAINS, NEVADA , 1999 .

[28]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[29]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[30]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[31]  Gregory P. Asner,et al.  Imaging spectroscopy measures desertification in United States and Argentina , 2001 .

[32]  A. Goetz,et al.  Mineralogic Information from a New Airborne Thermal Infrared Multispectral Scanner , 1983, Science.

[33]  G. Swayze The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: An integrated geological and geophysical approach , 1997 .

[34]  Robert O. Green,et al.  On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[36]  Michael Abrams,et al.  Alteration mapping using multispectral images; Cuprite mining district, Esmeralda County, Nevada , 1980 .

[37]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[38]  J. W. Boardman,et al.  Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[39]  C. Davis,et al.  Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data , 1993 .