Regional Mineral Mapping By Extending Hyperspectral Signatures Using Multispectral Data
暂无分享,去创建一个
[1] Akira Iwasaki,et al. Improvement of ASTER/SWIR crosstalk correction , 2004, SPIE Remote Sensing.
[2] Vincent J. Realmuto,et al. The advanced spaceborne thermal emission and reflectance radiometer (Aster) , 1991, Int. J. Imaging Syst. Technol..
[3] J. Boardman,et al. Leveraging the High Dimensionality of AVIRIS Data for improved Sub-Pixel Target i Unmixing and Rejection of False Positives : Mixture Tuned Matched Filtering , 1998 .
[4] F. Sabins. Remote Sensing: Principles and Interpretation , 1987 .
[5] A. B. Lefkoff,et al. Expert system-based mineral mapping in northern death valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1993 .
[6] Fred A. Kruse,et al. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .
[7] Alexander F. H. Goetz,et al. Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images , 1974 .
[8] Fred A. Kruse,et al. Knowledge‐based geologic mapping with imaging spectrometers , 1994 .
[9] Suzanne D. Golding,et al. Economic Geology and the Bulletin of the Society of Economic Geologists , 2006 .
[10] Fred A. Kruse. Combined SWIR and LWIR mineral mapping using MASTER/ASTER , 2002, IEEE International Geoscience and Remote Sensing Symposium.
[11] Simon J. Hook,et al. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .
[12] Hiroyuki Fujisada,et al. Design and performance of ASTER instrument , 1995, Remote Sensing.
[13] A. F. H. Goetz,et al. Mineralogical Mapping in the Cuprite Mining District, Nevada , 1985 .
[14] F. Kruse,et al. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina , 2006 .
[15] P. Switzer,et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .
[16] S. Hook,et al. The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .
[17] Stephen G. Ungar,et al. Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..
[18] A F Goetz,et al. Imaging Spectrometry for Earth Remote Sensing , 1985, Science.
[19] Jessica A. Faust,et al. Aviris Radiometric Laboratory Calibration, Inflight Validation and a Focused Sensitivity Analysis in 1998 , 2000 .
[20] Gary L. Raines,et al. Mineral resources and mineral resource potential of the Little Sand Spring Wilderness Study Area, Inyo County, California , 1984 .
[21] John B. Adams,et al. Detectability of minerals on desert alluvial fans using reflectance spectra , 1987 .
[22] F. Kruse. Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .
[23] Yasushi Yamaguchi,et al. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..
[24] S. J. Sutley,et al. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada , 1992 .
[25] Fred A. Kruse,et al. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..
[26] Jeff Dozier,et al. Retrieval of Surface Snow Grainsize and Melt Water from AVIRIS Spectra , 1996 .
[27] J. W. Boardman,et al. FIFTEEN YEARS OF HYPERSPECTRAL DATA: NORTHERN GRAPEVINE MOUNTAINS, NEVADA , 1999 .
[28] John Shepanski,et al. Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..
[29] L. Rowan,et al. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .
[30] J. Boardman,et al. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .
[31] Gregory P. Asner,et al. Imaging spectroscopy measures desertification in United States and Argentina , 2001 .
[32] A. Goetz,et al. Mineralogic Information from a New Airborne Thermal Infrared Multispectral Scanner , 1983, Science.
[33] G. Swayze. The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: An integrated geological and geophysical approach , 1997 .
[34] Robert O. Green,et al. On-orbit radiometric and spectral calibration characteristics of EO-1 Hyperion derived with an underflight of AVIRIS and in situ measurements at Salar de Arizaro, Argentina , 2003, IEEE Trans. Geosci. Remote. Sens..
[35] J. Boardman,et al. Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .
[36] Michael Abrams,et al. Alteration mapping using multispectral images; Cuprite mining district, Esmeralda County, Nevada , 1980 .
[37] J. Boardman. Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .
[38] J. W. Boardman,et al. Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).
[39] C. Davis,et al. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data , 1993 .