A plywood structure in the shell of fossil and living soft-shelled turtles (Trionychidae) and its evolutionary implications
暂无分享,去创建一个
W. Böhme | W. Joyce | T. Scheyer | U. Witzel | P. Sander
[1] H. Rathke. Ueber die Entwickelung der Schildkröten , 2009 .
[2] Guruprasad Madhavan,et al. An Introduction to Biomechanics-Solids and Fluids, Analysis, and Design , 2005, Annals of Biomedical Engineering.
[3] P. M. Sander,et al. HISTOLOGY OF ANKYLOSAUR OSTEODERMS: IMPLICATIONS FOR SYSTEMATICS AND FUNCTION , 2004 .
[4] J. F. Parham,et al. DEVELOPING A PROTOCOL FOR THE CONVERSION OF RANK-BASED TAXON NAMES TO PHYLOGENETICALLY DEFINED CLADE NAMES, AS EXEMPLIFIED BY TURTLES , 2004 .
[5] C. Franklin,et al. Blood-respiratory and acid–base changes during extended diving in the bimodally respiring freshwater turtle Rheodytes leukops , 2004, Journal of Comparative Physiology B.
[6] Jay D. Humphrey,et al. An Introduction to Biomechanics: Solids and Fluids, Analysis and Design , 2004 .
[7] G. R. Ultsch,et al. Hibernation in freshwater turtles: softshell turtles (Apalone spinifera) are the most intolerant of anoxia among North American species , 2003, Journal of Comparative Physiology B.
[8] M W Westneat,et al. Comparative kinematics of the forelimb during swimming in red-eared slider (Trachemys scripta) and spiny softshell (Apalone spinifera) turtles. , 2001, The Journal of experimental biology.
[9] G. R. Ultsch,et al. Lactic Acid Buffering by Bone and Shell in Anoxic Softshell and Painted Turtles , 2000, Physiological and Biochemical Zoology.
[10] Henry,et al. Exercise and forced submergence in the pond slider (Trachemys scripta) and softshell turtle (Apalone ferox): influence on bimodal gas exchange, diving behaviour and blood acid-base status , 1999, The Journal of experimental biology.
[11] J. Iverson. A revised checklist with distribution maps of the turtles of the world , 1992 .
[12] Paul W. Webb,et al. Locomotion in the Biology of Large Aquatic Vertebrates , 1990 .
[13] James R. Spotila,et al. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs , 1990, Nature.
[14] P. Meylan. The phylogenetic relationships of soft-shelled turtles (family Trionychidae). Bulletin of the AMNH ; v. 186, article 1 , 1987 .
[15] G. R. Ultsch,et al. The Comparative Physiology of Diving in North American Freshwater Turtles. I. Submergence Tolerance, Gas Exchange, and Acid-Base Balance , 1984, Physiological Zoology.
[16] P. Pritchard. Piscivory in turtles, and evolution of the long-necked Chelidae , 1984 .
[17] Martin Grayson,et al. Encyclopedia of composite materials and components , 1983 .
[18] Carl Gans,et al. Biology of the Reptilia , 1969 .
[19] R. Haines,et al. Metaplastic bone. , 1968, Journal of anatomy.
[20] S. Girgis. Aquatic respiration in the common Nile turtle, Trionyx triunguis (Forskal). , 1961, Comparative biochemistry and physiology.
[21] J. Kälin. ZUR MORPHOGENESE DES PANZERS BEI DEN SCHILDKRÖTEN , 1945 .
[22] Alexander A. Maximow,et al. A Textbook of Histology , 1935, The Indian Medical Gazette.
[23] H. G. Bronn. Klassen und Ordnungen des Tierreichs, wissen-schaftlich dargestellt in Wort und Bild , 1932, Nature.
[24] W. J. Schmidt. Die Panzerhaut der Weichschildkröte Emyda granosa und die funktionelle Bedeutung ihrer Strukturen , 1921 .
[25] Martin Rathke. Vorträge zur vergleichenden Anatomie der Wirbelthiere , 1862 .